Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 203(1): 139-146, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207139

RESUMO

AbstractThe coexistence of multiple reproductives in eusocial insects is widespread, yet the decisions leading to additional queen acceptance are not well understood. Unlike in vertebrates, acceptance decisions are likely controlled by the more numerous helper population rather than the parent reproductive. Yet there are likely to be queen-worker differences in acceptance criteria because workers and queens differ in their relatedness to a secondary queen. We develop a model that examines queen-worker conflict in two scenarios: accepting a queen's sister or daughter. We additionally ask how the mating frequency and split sex ratios affect the outcomes of these conflicts. Our results reveal that conflict over queen acceptance is highest in monandrous mating systems. We identify a "window of conflict" in which a queen is selected to accept her sister but her workers do not. Our result, that polyandry neutralizes conflict over acceptance thresholds, suggests that conflict suppression may be an additional contributor to the maintenance of polyandrous mating systems.


Assuntos
Insetos , Reprodução , Animais , Feminino , Humanos , Razão de Masculinidade
2.
Evolution ; 76(1): 101-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773247

RESUMO

Large body sizes have evolved structures to facilitate resource transport. Like unitary organisms, social insect colonies must transport information and resources. Colonies with more individuals may experience transport challenges similar to large-bodied organisms. In ant colonies, transport occurs in the nest, which may consist of structures that facilitate movement. We examine three attributes of nests that might have evolved to mitigate transport challenges related to colony size: (1) subdivision-nests of species with large colonies are more subdivided to reduce crowd viscosity; (2) branching-nest tunnels increase branching in species with large colonies to reduce travel distances; and (3) shortcuts-nests of species with large colonies have cross-linking tunnels to connect distant parts of the nest and create alternative routes. We test these hypotheses by comparing nest structures of species with different colony sizes in phylogenetically controlled meta-analyses. Our findings support the hypothesis that nest subdivision and branching evolved to mitigate transport challenges related to colony size. Nests of species with large colonies contain more chambers and branching tunnels. The similarity in how ant nests and bodies of unitary organisms have evolved in response to increasing size suggests common solutions across taxa and levels of biological organization.


Assuntos
Formigas , Animais , Formigas/fisiologia , Humanos , Comportamento de Nidação/fisiologia
3.
J Anim Ecol ; 90(4): 943-954, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33426684

RESUMO

Identifying the general principles that shape mechanisms of collective decision-making requires studies that span a diversity of ecological contexts. However, collective decision-making has only been explored in a handful of systems. Here, I investigate the ecologically mediated costs and benefits of collective decisions by socially parasitic kidnapping ants Temnothorax americanus over where to launch raids to steal host brood. I first investigate their sampling strategies and preferences with choice tests. Using more realistic spatial scales, I confirm the findings of others that colonies use a sequential choice strategy, and do not compare options simultaneously. I then ask which ecological conditions could favour the evolution of this strategy by testing the following hypotheses from optimal foraging and mate choice theories: (a) raiding decisions are time constrained or (b) search payoffs are low due to resource uniformity. Spatial distribution and phenological data on nest contents support the time constraints hypothesis. Host nests contain an optimal ratio of brood and workers for a brief period relative to discovery rates. Colonies therefore benefit from raiding most nests they find in this period rather than deliberating over the best choice, favouring host quantity over quality. The decision strategy for raids uncovered here contrasts with best-of-n collective decision-making found in other systems. These findings demonstrate that ecological constraints on information acquisition can alter how collectives process information.


Assuntos
Formigas , Parasitos , Animais , Comportamento Animal , Crime , Comportamento Social
5.
Curr Opin Insect Sci ; 34: 85-90, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247424

RESUMO

In this review, we adopt a step-wise framework for the evolution a major evolutionary transition in light of eusocial insects. By focusing on the sequence of (1) group formation, (2) alignment of genetic interests, and finally (3) group integration to higher-level functioning, we highlight that these steps occasionally interact with each other through feedback. We summarize models that capture such feedback and identify cases where there is room for the development of between-step relationships. We suggest that life history traits may serve as a conduit for analyzing feedback between suites of correlated traits. Our review reveals that there are many relationships both within and between the above steps that await formal modeling.


Assuntos
Evolução Biológica , Insetos , Modelos Biológicos , Comportamento Social , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...