Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 24(9): e2300309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334196

RESUMO

The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of myeloid progenitor cells expressing D816V- and V560G-KIT mutants, using an FDCP1 isogenic cell line model. Proteomic analysis revealed increased abundance of proteases and growth signalling proteins in KIT-mutant cells compared to empty vector (EV) controls. Pathway analysis identified increased oxidative phosphorylation in D816V- and V560G-mutant KIT cells, which was targetable using the inhibitor IACS010759. Dysregulation of RNA metabolism and cytoskeleton/adhesion pathways was identified in both the proteome and phosphoproteome of KIT-mutant cells. Phosphoproteome analysis further revealed active kinases such as EGFR, ERK and PKC, which were targetable using pharmacological inhibitors. This study provides a pharmaco-phosphoproteomic profile of D816V- and V560G-mutant KIT cells, which reveals novel therapeutic strategies that may be applicable to a range of cancers.


Assuntos
Mutação , Proteômica , Proteínas Proto-Oncogênicas c-kit , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Humanos , Proteômica/métodos , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais/genética , Fosforilação , Proteoma/genética , Proteoma/metabolismo , Proteoma/análise
2.
Mol Cell Proteomics ; 22(3): 100503, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682716

RESUMO

Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.


Assuntos
Proteína Quinase Ativada por DNA , Leucemia Mieloide Aguda , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Dasatinibe , DNA , Proteína Quinase Ativada por DNA/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases , Serina , Transdução de Sinais , Treonina , Serina-Treonina Quinases TOR , Tirosina
3.
Pharmacol Res Perspect ; 8(5): e00654, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32930516

RESUMO

There remains a compelling need for the development of nonsurgical sterilizing agents to expand the fertility management options for both domestic and feral animal species. We hypothesize that an efficacious sterilization approach would be to selectively ablate nonrenewable cell types that are essential for reproduction, such as the undifferentiated gonocytes within the embryonic gonad. Here, we report a novel strategy to achieve this goal centered on the use of a chemically modified M13 bacteriophage to effect the targeted delivery of menadione, a redox-cycling naphthoquinone, to mouse gonocytes. Panning of the M13 random peptide 'phage display library proved effective in the isolation of gonocyte-specific targeting clones. One such clone was modified via N-succinimidyl-S-acetylthioacetate (SATA) linkage to the N-terminus of the major PVIII capsid protein. Subsequent deacetylation of the SATA was undertaken to expose a thiol group capable of reacting with menadione through Michael addition. This chemical modification was confirmed using UV spectrophotometry. In proof-of-concept experiments we applied the modified 'phage to primary cultures of fetal germ cells and induced, an approximately, 60% reduction in the viability of the target cell population. These studies pave the way for in vivo application of chemically modified M13 bacteriophage in order to achieve the selective ablation of nonrenewable cell types in the reproductive system, thereby providing a novel nonsurgical approach the regulation of fertility in target species.


Assuntos
Bacteriófago M13/fisiologia , Células Germinativas/citologia , Esterilização Reprodutiva/veterinária , Succinimidas/química , Sulfetos/química , Vitamina K 3/farmacologia , Animais , Bacteriófago M13/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células Germinativas/efeitos dos fármacos , Masculino , Camundongos , Ovário/citologia , Ovário/efeitos dos fármacos , Biblioteca de Peptídeos , Estudo de Prova de Conceito , Testículo/citologia , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...