Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082870

RESUMO

Swallowing involves the precise coordination of a large number of muscles. This coordination can be quantified non-invasively by electromyographic (EMG) time-series analysis of swallowing events. The temporal alignment of swallow events is critical for defining coordination patterns. Here, a new framework was developed to use the acoustic signal associated with the opening of the Eustachian tube as a fiducial marker to align EMG signals with swallowing. To investigate its accuracy, manometry, audio from the Eustachian tube, and EMG were simultaneously recorded from two participants while performing different swallowing maneuvers. Eustachian tube opening consistently occurred alongside EMG activations and within 0.025 ± 0.022 s of the gold standard manometry-determined functional swallowing onset. A comparison with two traditional EMG alignment methods based on the integrated and rectified EMG signals was then performed over eight participants. Discrepancies of between 0.2 to 0.3 s were found between the initiation of swallowing and the onset or peak EMG activity. Eustachian tube opening served as a more accurate fiducial marker for temporal data alignment, compared to the traditional EMG alignment methods that were based on EMG parameters.Clinical Relevance- The proposed method will allow EMG recordings to be directly associated with the functional onset of swallowing. This provides a more accurate foundation for time-series analysis of muscle coordination and thus the identification of EMG biomarkers associated with healthy and dysphagic swallowing.


Assuntos
Marcadores Fiduciais , Músculos , Humanos , Eletromiografia/métodos , Músculos/fisiologia , Manometria/métodos
2.
Front Physiol ; 13: 1017649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277190

RESUMO

The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5120-5123, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36083930

RESUMO

Swallowing is a vital function that serves to safely transport food and fluid to the stomach, while simultaneously protecting our airways. Evaluation of swallowing is important for the diagnosis and rehabilitation of individuals with dysphagia, a disorder of swallowing. Flexible high-density surface electromyography (HD sEMG) arrays were designed and fabricated to span the floor of mouth and neck muscles. These arrays were applied on 6 healthy participants over duplicate recording sessions. During each recording session, participants performed three different swallowing motor tasks. The HD sEMG signals were filtered and tasks extracted. For each task, the RMS amplitude was computed, visualized, and compared. Dynamic motor coordination was evident in the filtered signals traces, with different electrode locations showing unique temporal activations. The 2D topographical maps allowed the location of different RMS intensities to be visualized, revealing qualitatively similar patterns across participants and tasks. These motor task trends were also seen within RMS quantifications. The RMS metric across all participants identified significant differences between non-effortful 3 ml and effortful 3 ml swallow tasks ( p=0.006) and there was a minimal variation of 3.1±1.9 µV RMS for repeated recording sessions by each participant. The HD-sEMG array successfully recorded differences in muscle activations during swallowing and was able to discern between two different motor tasks. The arrays offers a spatially detailed non-invasive assessment of the neuromuscular performance of swallowing. Clinical Relevance- The utility of HD-sEMG arrays for evaluation of the muscles involved in swallowing could enable diagnosis and rehabilitation of individuals with dysphagia.


Assuntos
Transtornos de Deglutição , Deglutição , Deglutição/fisiologia , Transtornos de Deglutição/diagnóstico , Eletromiografia , Voluntários Saudáveis , Humanos , Músculos do Pescoço
4.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G318-G330, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916409

RESUMO

Coordinated contractions across the small and large intestines via the ileocecal junction (ICJ) are critical to healthy gastrointestinal function and are in part governed by myoelectrical activity. In this study, the spatiotemporal characteristics of the bioelectrical conduction across the ICJ and its adjacent regions were quantified in anesthetized rabbits. High-resolution mapping was applied from the terminal ileum (TI) to the sacculus rotundus (SR), across the ICJ and into the beginning of the large intestine at the cecum ampulla coli (AC). Orally propagating slow wave patterns in the SR did not entrain the TI. However, aborally propagating patterns from the TI were able to entrain the SR. Bioelectrical activity was recorded within the ICJ and AC, revealing complex interactions of slow waves, spike bursts, and bioelectrical quiescence. This suggests the involvement of myogenic coordination when regulating motility between the small and large intestines. Mean slow wave frequency between regions did not vary significantly (13.74-17.16 cycles/min). Slow waves in the SR propagated with significantly faster speeds (18.51 ± 1.57 mm/s) compared with the TI (14.05 ± 2.53 mm/s, P = 0.0113) and AC (9.56 ± 1.56 mm/s, P = 0.0001). Significantly higher amplitudes were observed in both the TI (0.28 ± 0.13 mV, P = 0.0167) and SR (0.24 ± 0.08 mV, P = 0.0159) within the small intestine compared with the large intestine AC (0.03 ± 0.01 mV). We hypothesize that orally propagating slow waves facilitate a motor-brake pattern in the SR to limit outflow into the ICJ, similar to those previously observed in other gastrointestinal regions.NEW & NOTEWORTHY Competing slow wave pacemakers were observed in the terminal ileum and sacculus rotundus. Prevalent oral propagation in the sacculus rotundus toward the terminal ileum potentially acts as a brake mechanism limiting outflow. Slow waves and periods of quiescence at the ileocecal junction suggest that activation may depend on the coregulatory flow and distention pathways. Slow waves and spike bursts in the cecum impart a role in the coordination of motility.


Assuntos
Motilidade Gastrointestinal , Íleo , Animais , Ceco , Motilidade Gastrointestinal/fisiologia , Íleo/fisiologia , Intestino Grosso , Intestino Delgado/fisiologia , Coelhos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3953-3956, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018865

RESUMO

Intestinal motility is coordinated by myogenic, neuronal and hormonal factors. Myogenic control of motility via bioelectric slow waves (SW) has been investigated using low-resolution and high-resolution (HR) electrical mapping techniques. Due to the highly conformable and irregular surface of the gut, suboptimal coverage of HR recordings may occur. In this study we designed and developed an inflatable cuff as a platform to apply even pressure across the intestinal surface to achieve consistent and reliable recordings. The inflatable cuff and a HR electrode array were applied in vivo to demonstrate the reliability of SW signal acquisition over a range of inflatable pressures (0 - 5 mm Hg). The frequency, amplitude, percentage of viable signals and signal to noise ratio metrics of the SW signals were computed and compared. Overall, with an increase in inflatable pressure from 0 to 5 mm Hg, the frequency did not change, but the amplitude of the SWs decreased from 0.10 to 0.07 mV. The noise levels were consistent across the range of inflatable pressure levels and the percentage of viable SW recordings improved significantly from 57% to 74% after application of 1 mm Hg of pressure. The inflatable and conformable cuff presented in this study provides a reliable platform for HR mapping of bioelectrical events in the intestines and other conformable organs.Clinical Relevance- This framework improves the quality and reliability of bioelectrical high-resolution recordings obtained from the small intestine. In the future, these recordings will improve our understanding of the pathophysiological mechanisms governing intestinal motility disorders and may provide clinicians with new strategies for diagnosis and treatment.


Assuntos
Motilidade Gastrointestinal , Intestino Delgado , Fenômenos Eletrofisiológicos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
6.
Front Synaptic Neurosci ; 12: 609903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488380

RESUMO

Preterm infants exposed to supraphysiological oxygen (hyperoxia) during the neonatal period have hippocampal atrophy and cognitive dysfunction later in childhood and as adolescents. Previously, we reported that 14-week-old adult mice exposed to hyperoxia as newborns had spatial memory deficits and hippocampal shrinkage, findings that mirror those of human adolescents who were born preterm. The area CA1 region of the hippocampus that is crucial for spatial learning and memory is highly vulnerable to oxidative stress. In this study, we investigated the long-term impact of neonatal hyperoxia exposure on hippocampal CA3-CA1 synaptic function. Male and female C57BL/6J mouse pups were continuously exposed to either 85% normobaric oxygen or air between postnatal days 2-14. Hippocampal slice electrophysiology at CA3-CA1 synapses was then performed at 14 weeks of age. We observed that hyperoxia exposed mice have heightened strength of basal synaptic transmission measured in input-output curves, increased fiber volley amplitude indicating increased axonal excitability, and heightened LTP magnitude at CA3-CA1 synapses, likely a consequence of increased postsynaptic depolarization during tetanus. These data demonstrate that supraphysiological oxygen exposure during the critical neonatal developmental period leads to pathologically heightened CA3-CA1 synaptic function during early adulthood which may contribute to hippocampal shrinkage and learning and memory deficits we previously reported. Furthermore, these results will help shed light on the consequences of hyperoxia exposure on the development of hippocampal synaptic circuit abnormalities that could be contributing to cognitive deficits in children born preterm.

7.
Sci Rep ; 9(1): 13364, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527593

RESUMO

Preterm infants requiring prolonged oxygen therapy often develop cognitive dysfunction in later life. Previously, we reported that 14-week-old young adult mice exposed to hyperoxia as newborns had spatial and learning deficits and hippocampal shrinkage. We hypothesized that the underlying mechanism was the induction of hippocampal mitochondrial dysfunction by neonatal hyperoxia. C57BL/6J mouse pups were exposed to 85% oxygen or room air from P2-P14. Hippocampal proteomic analysis was performed in young adult mice (14 weeks). Mitochondrial bioenergetics were measured in neonatal (P14) and young adult mice. We found that hyperoxia exposure reduced mitochondrial ATP-linked oxygen consumption and increased state 4 respiration linked proton leak in both neonatal and young adult mice while complex I function was decreased at P14 but increased in young adult mice. Proteomic analysis revealed that hyperoxia exposure decreased complex I NDUFB8 and NDUFB11 and complex IV 7B subunits, but increased complex III subunit 9 in young adult mice. In conclusion, neonatal hyperoxia permanently impairs hippocampal mitochondrial function and alters complex I function. These hippocampal mitochondrial changes may account for cognitive deficits seen in children and adolescents born preterm and may potentially be a contributing mechanism in other oxidative stress associated brain disorders.


Assuntos
Hipocampo , Mitocôndrias , Terapia Respiratória , Animais , Camundongos , Animais Recém-Nascidos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Hipocampo/metabolismo , Hiperóxia/metabolismo , Aprendizagem/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Consumo de Oxigênio , Proteômica , Terapia Respiratória/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...