Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 16(10): e1009046, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064727

RESUMO

The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking. Herein, we provide evidence that Ccr4-Not activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Ccr4-Not disruption reduces global TORC1 signaling, and it also upregulates expression of the cell wall integrity (CWI) pathway terminal kinase Mpk1. Although CWI signaling represses TORC1 signaling, we find that Ccr4-Not loss inhibits TORC1 independently of CWI activation. Instead, we demonstrate that Ccr4-Not promotes the function of the vacuole V-ATPase, which interacts with the Gtr1 GTPase-containing EGO complex to stimulate TORC1 in response to nutrient sufficiency. Bypassing the V-ATPase requirement in TORC1 activation using a constitutively active Gtr1 mutant fully restores TORC1 signaling in Ccr4-Not deficient cells. Transcriptome analysis and functional studies revealed that loss of the Ccr4 subunit activates the TORC1 repressed retrograde signaling pathway to upregulate mitochondrial activity. Blocking this mitochondrial upregulation in Ccr4-Not deficient cells further represses TORC1 signaling, and it causes synergistic deficiencies in mitochondrial-dependent metabolism. These data support a model whereby Ccr4-Not loss impairs V-ATPase dependent TORC1 activation that forces cells to enhance mitochondrial metabolism to sustain a minimal level of TORC1 signaling necessary for cell growth and proliferation. Therefore, Ccr4-Not plays an integral role in nutrient signaling and cell metabolism by promoting V-ATPase dependent TORC1 activation.


Assuntos
Proteínas de Ciclo Celular/genética , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/genética , Parede Celular/genética , Endossomos/genética , Regulação Fúngica da Expressão Gênica/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Vacúolos/genética
2.
Neurobiol Dis ; 141: 104879, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344153

RESUMO

Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.


Assuntos
Proteínas de Drosophila/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cromossomos Humanos Par 15/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Perfilação da Expressão Gênica , Humanos , Proteoma , Proteômica , Transcriptoma , Trissomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...