Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 11: 246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878622

RESUMO

Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce "de novo" injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.

3.
PLoS One ; 11(1): e0146574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26765258

RESUMO

BACKGROUND: A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. METHODS: Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. RESULTS: CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. CONCLUSIONS: Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation.


Assuntos
Asfixia Neonatal/terapia , Circulação Cerebrovascular , Hemorragias Intracranianas/etiologia , Respiração Artificial/efeitos adversos , Animais , Asfixia Neonatal/fisiopatologia , Barreira Hematoencefálica/fisiologia , Artérias Carótidas/fisiologia , Respiração Artificial/métodos , Ovinos , Relação Ventilação-Perfusão
4.
Front Pediatr ; 3: 97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618148

RESUMO

The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population.

5.
PLoS One ; 8(11): e77377, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223120

RESUMO

Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle--compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.


Assuntos
Asfixia/patologia , Encéfalo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Animais Lactentes , Apoptose , Comportamento Animal , Caspase 3/metabolismo , Feminino , Gravidez , Ovinos , Cordão Umbilical/irrigação sanguínea
6.
Am J Obstet Gynecol ; 206(5): 448.e8-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22542124

RESUMO

OBJECTIVE: The objective of the study was to explore whether human amnion epithelial cells (hAECs) can mitigate ventilation-induced lung injury. STUDY DESIGN: An established in utero ovine model of ventilation-induced lung injury was used. At day 110 of gestation, singleton fetal lambs either had sham in utero ventilation (IUV) (n = 4), 12 hours of IUV alone (n = 4), or 12 hours of IUV and hAEC administration (n = 5). The primary outcome, structural lung injury, was assessed 1 week later. RESULTS: Compared with sham controls, IUV alone was associated with significant lung injury: increased collagen (P = .03), elastin (P = .02), fibrosis (P = .02), and reduced secondary-septal crests (P = .009). This effect of IUV was significantly mitigated by the administration of hAECs: less collagen (P = .03), elastin (P = .04), fibrosis (P = .02), normalized secondary-septal crests (P = .02). The hAECs were immunolocalized within the fetal lung and had differentiated into type I and II alveolar cells. CONCLUSION: The hAECs mitigate ventilation-induced lung injury and differentiated into alveolar cells in vivo.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Gravidez , Nascimento Prematuro , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Fator de Crescimento Transformador beta1/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...