Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Phys Chem B ; 127(2): 446-455, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36607139

RESUMO

Proteolysis targeting chimera (PROTAC) is a novel drug modality that facilitates the degradation of a target protein by inducing proximity with an E3 ligase. In this work, we present a new computational framework to model the cooperativity between PROTAC-E3 binding and PROTAC-target binding principally through protein-protein interactions (PPIs) induced by the PROTAC. Due to the scarcity and low resolution of experimental measurements, the physical and chemical drivers of these non-native PPIs remain to be elucidated. We develop a coarse-grained (CG) approach to model interactions in the target-PROTAC-E3 complexes, which enables converged thermodynamic estimations using alchemical free energy calculation methods despite an unconventional scale of perturbations. With minimal parametrization, we successfully capture fundamental principles of cooperativity, including the optimality of intermediate PROTAC linker lengths that originates from configurational entropy. We qualitatively characterize the dependency of cooperativity on PROTAC linker lengths and protein charges and shapes. Minimal inclusion of sequence- and conformation-specific features in our current force field, however, limits quantitative modeling to reproduce experimental measurements, but further development of the CG model may allow for efficient computational screening to optimize PROTAC cooperativity.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Termodinâmica
2.
J Chem Phys ; 157(15): 154105, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272799

RESUMO

We introduce a novel machine learning strategy, kernel addition Gaussian process regression (KA-GPR), in molecular-orbital-based machine learning (MOB-ML) to learn the total correlation energies of general electronic structure theories for closed- and open-shell systems by introducing a machine learning strategy. The learning efficiency of MOB-ML(KA-GPR) is the same as the original MOB-ML method for the smallest criegee molecule, which is a closed-shell molecule with multi-reference characters. In addition, the prediction accuracies of different small free radicals could reach the chemical accuracy of 1 kcal/mol by training on one example structure. Accurate potential energy surfaces for the H10 chain (closed-shell) and water OH bond dissociation (open-shell) could also be generated by MOB-ML(KA-GPR). To explore the breadth of chemical systems that KA-GPR can describe, we further apply MOB-ML to accurately predict the large benchmark datasets for closed- (QM9, QM7b-T, and GDB-13-T) and open-shell (QMSpin) molecules.

3.
J Chem Phys ; 157(10): 104109, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109219

RESUMO

This study extends the accurate and transferable molecular-orbital-based machine learning (MOB-ML) approach to modeling the contribution of electron correlation to dipole moments at the cost of Hartree-Fock computations. A MOB pairwise decomposition of the correlation part of the dipole moment is applied, and these pair dipole moments could be further regressed as a universal function of MOs. The dipole MOB features consist of the energy MOB features and their responses to electric fields. An interpretable and rotationally equivariant derivative kernel for Gaussian process regression (GPR) is introduced to learn the dipole moment more efficiently. The proposed problem setup, feature design, and ML algorithm are shown to provide highly accurate models for both dipole moments and energies on water and 14 small molecules. To demonstrate the ability of MOB-ML to function as generalized density-matrix functionals for molecular dipole moments and energies of organic molecules, we further apply the proposed MOB-ML approach to train and test the molecules from the QM9 dataset. The application of local scalable GPR with Gaussian mixture model unsupervised clustering GPR scales up MOB-ML to a large-data regime while retaining the prediction accuracy. In addition, compared with the literature results, MOB-ML provides the best test mean absolute errors of 4.21 mD and 0.045 kcal/mol for dipole moment and energy models, respectively, when training on 110 000 QM9 molecules. The excellent transferability of the resulting QM9 models is also illustrated by the accurate predictions for four different series of peptides.


Assuntos
Elétrons , Aprendizado de Máquina , Eletricidade , Distribuição Normal , Água
4.
J Phys Chem A ; 126(39): 6858-6869, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36137217

RESUMO

The prediction of comonomer incorporation statistics in polyolefin catalysis necessitates an accurate calculation of free energies corresponding to monomer binding and insertion, often requiring sub-kcal/mol resolution to resolve experimental free energies. Batch reactor experiments are used to probe incorporation statistics of ethene and larger α-olefins for three constrained geometry complexes which are employed as model systems. Herein, over 6 ns of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is performed in combination with the zero-temperature string method to characterize the solution-phase insertion barrier and to analyze the contributions from conformational and vibrational anharmonicity arising both in vacuum and in solution. Conformational sampling in the solution-phase results in 0-2 kcal/mol corrections to the insertion barrier which are on the same scale necessary to resolve experimental free energies. Anharmonic contributions from conformational sampling in the solution phase are crucial energy contributions missing from static density functional theory calculations and implicit solvation models, and the accurate calculation of these contributions is a key step toward the quantitative prediction of comonomer incorporation statistics.

5.
J Chem Theory Comput ; 18(8): 4826-4835, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35858242

RESUMO

We introduce an unsupervised clustering algorithm to improve training efficiency and accuracy in predicting energies using molecular-orbital-based machine learning (MOB-ML). This work determines clusters via the Gaussian mixture model (GMM) in an entirely automatic manner and simplifies an earlier supervised clustering approach [ J. Chem. Theory Comput. 2019, 15, 6668] by eliminating both the necessity for user-specified parameters and the training of an additional classifier. Unsupervised clustering results from GMM have the advantages of accurately reproducing chemically intuitive groupings of frontier molecular orbitals and exhibiting improved performance with an increasing number of training examples. The resulting clusters from supervised or unsupervised clustering are further combined with scalable Gaussian process regression (GPR) or linear regression (LR) to learn molecular energies accurately by generating a local regression model in each cluster. Among all four combinations of regressors and clustering methods, GMM combined with scalable exact GPR (GMM/GPR) is the most efficient training protocol for MOB-ML. The numerical tests of molecular energy learning on thermalized data sets of drug-like molecules demonstrate the improved accuracy, transferability, and learning efficiency of GMM/GPR over other training protocols for MOB-ML, i.e., supervised regression clustering combined with GPR (RC/GPR) and GPR without clustering. GMM/GPR also provides the best molecular energy predictions compared with ones from the literature on the same benchmark data sets. With a lower scaling, GMM/GPR has a 10.4-fold speedup in wall-clock training time compared with scalable exact GPR with a training size of 6500 QM7b-T molecules.


Assuntos
Algoritmos , Aprendizado de Máquina , Análise por Conglomerados , Distribuição Normal
6.
Proc Natl Acad Sci U S A ; 119(31): e2205221119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35901215

RESUMO

Predicting electronic energies, densities, and related chemical properties can facilitate the discovery of novel catalysts, medicines, and battery materials. However, existing machine learning techniques are challenged by the scarcity of training data when exploring unknown chemical spaces. We overcome this barrier by systematically incorporating knowledge of molecular electronic structure into deep learning. By developing a physics-inspired equivariant neural network, we introduce a method to learn molecular representations based on the electronic interactions among atomic orbitals. Our method, OrbNet-Equi, leverages efficient tight-binding simulations and learned mappings to recover high-fidelity physical quantities. OrbNet-Equi accurately models a wide spectrum of target properties while being several orders of magnitude faster than density functional theory. Despite only using training samples collected from readily available small-molecule libraries, OrbNet-Equi outperforms traditional semiempirical and machine learning-based methods on comprehensive downstream benchmarks that encompass diverse main-group chemical processes. Our method also describes interactions in challenging charge-transfer complexes and open-shell systems. We anticipate that the strategy presented here will help to expand opportunities for studies in chemistry and materials science, where the acquisition of experimental or reference training data is costly.


Assuntos
Aprendizado Profundo , Eletrônica , Aprendizado de Máquina , Redes Neurais de Computação , Bibliotecas de Moléculas Pequenas
7.
J Phys Chem A ; 126(25): 4013-4024, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35715227

RESUMO

A machine-learning based approach for evaluating potential energies for quantum mechanical studies of properties of the ground and excited vibrational states of small molecules is developed. This approach uses the molecular-orbital-based machine learning (MOB-ML) method to generate electronic energies with the accuracy of CCSD(T) calculations at the same cost as a Hartree-Fock calculation. To further reduce the computational cost of the potential energy evaluations without sacrificing the CCSD(T) level accuracy, GPU-accelerated Neural Network Potential Energy Surfaces (NN-PES) are trained to geometries and energies that are collected from small-scale Diffusion Monte Carlo (DMC) simulations, which are run using energies evaluated using the MOB-ML model. The combined NN+(MOB-ML) approach is used in variational calculations of the ground and low-lying vibrational excited states of water and in DMC calculations of the ground states of water, CH5+, and its deuterated analogues. For both of these molecules, comparisons are made to the results obtained using potentials that were fit to much larger sets of electronic energies than were required to train the MOB-ML models. The NN+(MOB-ML) approach is also used to obtain a potential surface for C2H5+, which is a carbocation with a nonclassical equilibrium structure for which there is currently no available potential surface. This potential is used to explore the CH stretching vibrations, focusing on those of the bridging hydrogen atom. For both CH5+ and C2H5+ the MOB-ML model is trained using geometries that were sampled from an AIMD trajectory, which was run at 350 K. By comparison, the structures sampled in the ground state calculations can have energies that are as much as ten times larger than those used to train the MOB-ML model. For water a higher temperature AIMD trajectory is needed to obtain accurate results due to the smaller thermal energy. A second MOB-ML model for C2H5+ was developed with additional higher energy structures in the training set. The two models are found to provide nearly identical descriptions of the ground state of C2H5+.

8.
Semin Fetal Neonatal Med ; 27(4): 101331, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35469712

RESUMO

Persistent pulmonary hypertension of the newborn (PPHN) is a complication of term birth, characterized by persistent hypoxemia secondary to failure of normal postnatal reduction in pulmonary vascular resistance, with potential for short- and long-term morbidity and mortality. The primary pharmacologic goal for this condition is reduction of the neonate's elevated pulmonary vascular resistance with inhaled nitric oxide, the only approved treatment option. Various adjunctive, unapproved therapeutics have been trialed with mixed results, likely related to challenges with recruiting the full, intended patient population into clinical studies. Recently, real-world data and subsequent derived evidence have been utilized to improve the efficiency of various pediatric clinical trials. We aim to provide recent perspectives regarding the use of real-world data in the planning and execution of pediatric clinical trials and how this may facilitate more streamlined assessment of future therapeutics for the treatment of PPHN and other neonatal conditions.


Assuntos
Hipertensão Pulmonar , Síndrome da Persistência do Padrão de Circulação Fetal , Ensaios Clínicos como Assunto , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Recém-Nascido , Óxido Nítrico/uso terapêutico , Síndrome da Persistência do Padrão de Circulação Fetal/tratamento farmacológico , Resistência Vascular
9.
J Chem Phys ; 156(13): 131102, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395895

RESUMO

Two-dimensional Raman and hybrid terahertz-Raman spectroscopic techniques provide invaluable insight into molecular structures and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium-nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy.

10.
J Chem Phys ; 155(20): 204103, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852495

RESUMO

We present OrbNet Denali, a machine learning model for an electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing graph neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 × 106 DFT calculations on molecules and geometries. This dataset covers the most common elements in biochemistry and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I) and charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformer benchmark set, OrbNet Denali has a median correlation coefficient of R2 = 0.90 compared to the reference DLPNO-CCSD(T) calculation and R2 = 0.97 compared to the method used to generate the training data (ωB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of ωB97X-D3/def2-TZVP with an average mean absolute error of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.

11.
Nucleic Acids Res ; 49(22): 12943-12954, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871407

RESUMO

Programmed ribosomal frameshifting (PRF) is a translational recoding mechanism that enables the synthesis of multiple polypeptides from a single transcript. During translation of the alphavirus structural polyprotein, the efficiency of -1PRF is coordinated by a 'slippery' sequence in the transcript, an adjacent RNA stem-loop, and a conformational transition in the nascent polypeptide chain. To characterize each of these effectors, we measured the effects of 4530 mutations on -1PRF by deep mutational scanning. While most mutations within the slip-site and stem-loop reduce the efficiency of -1PRF, the effects of mutations upstream of the slip-site are far more variable. We identify several regions where modifications of the amino acid sequence of the nascent polypeptide impact the efficiency of -1PRF. Molecular dynamics simulations of polyprotein biogenesis suggest the effects of these mutations primarily arise from their impacts on the mechanical forces that are generated by the translocon-mediated cotranslational folding of the nascent polypeptide chain. Finally, we provide evidence suggesting that the coupling between cotranslational folding and -1PRF depends on the translation kinetics upstream of the slip-site. These findings demonstrate how -1PRF is coordinated by features within both the transcript and nascent chain.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Simulação de Dinâmica Molecular , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Ribossomos/genética , Alphavirus/genética , Alphavirus/metabolismo , Células HEK293 , Humanos , Cinética , Mutação , Conformação de Ácido Nucleico , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/metabolismo
12.
J Phys Chem A ; 125(28): 6141-6150, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34240867

RESUMO

The expanding field of boron clusters has attracted continuous theoretical efforts to understand their diverse structures and unique bonding. We recently discovered a new reversible redox event of B12(O-3-methylbutyl)12 in which the superoxidized radical cationic form [B12(O-3-methylbutyl)12]•+ was identified and isolated for the first time. Herein, comprehensive (TD-)DFT studies in tandem with electrochemical experiments were employed to demonstrate the generality of the reported behavior across perfunctionalized B12(OR)12 clusters (R = aryl or alkyl). While the spin density of radical cationic clusters is delocalized in the core region, the oxidation brings about notable gains of positive partial charges on the supporting groups whose electronics can readily tune the redox potential of the 0/•+ couple. The underlying changes of frontier orbitals were elucidated, and the resulting [B12(OR)12]•+ species manifest a general diagnostic absorption as a consequence of mixed local/charge-transfer excitations.

13.
J Phys Chem Lett ; 12(24): 5649-5659, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34110833

RESUMO

Nonresonant second harmonic generation (SHG) phase and amplitude measurements obtained from the silica-water interface at varying pH values and an ionic strength of 0.5 M point to the existence of a nonlinear susceptibility term, which we call χX(3), that is associated with a 90° phase shift. Including this contribution in a model for the total effective second-order nonlinear susceptibility produces reasonable point estimates for interfacial potentials and second-order nonlinear susceptibilities when χX(3) ≈ 1.5χwater(3). A model without this term and containing only traditional χ(2) and χ(3) terms cannot recapitulate the experimental data. The new model also provides a demonstrated utility for distinguishing apparent differences in the second-order nonlinear susceptibility when the electrolyte is NaCl versus MgSO4, pointing to the possibility of using heterodyne-detected SHG to investigate ion specificity in interfacial processes.

14.
Biophys J ; 120(12): 2425-2435, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932440

RESUMO

Force-sensitive arrest peptides regulate protein biosynthesis by stalling the ribosome as they are translated. Synthesis can be resumed when the nascent arrest peptide experiences a pulling force of sufficient magnitude to break the stall. Efficient stalling is dependent on the specific identity of a large number of amino acids, including amino acids that are tens of angstroms away from the peptidyl transferase center (PTC). The mechanism of force-induced restart and the role of these essential amino acids far from the PTC is currently unknown. We use hundreds of independent molecular dynamics trajectories spanning over 120 µs in combination with kinetic analysis to characterize multiple barriers along the force-induced restart pathway for the arrest peptide SecM. We find that the essential amino acids far from the PTC play a major role in controlling the transduction of applied force. In successive states along the stall-breaking pathway, the applied force propagates up the nascent chain until it reaches the C-terminus of SecM and the PTC, inducing conformational changes that allow for restart of translation. A similar mechanism of force propagation through multiple states is observed in the VemP stall-breaking pathway, but secondary structure in VemP allows for heterogeneity in the order of transitions through intermediate states. Results from both arrest peptides explain how residues that are tens of angstroms away from the catalytic center of the ribosome impact stalling efficiency by mediating the response to an applied force and shielding the amino acids responsible for maintaining the stalled state of the PTC.


Assuntos
Peptidil Transferases , Ribossomos , Cinética , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Ribossomos/metabolismo
15.
J Chem Phys ; 154(12): 124120, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810669

RESUMO

Molecular-orbital-based machine learning (MOB-ML) enables the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. Here, we present the derivation, implementation, and numerical demonstration of MOB-ML analytical nuclear gradients, which are formulated in a general Lagrangian framework to enforce orthogonality, localization, and Brillouin constraints on the molecular orbitals. The MOB-ML gradient framework is general with respect to the regression technique (e.g., Gaussian process regression or neural networks) and the MOB feature design. We show that MOB-ML gradients are highly accurate compared to other ML methods on the ISO17 dataset while only being trained on energies for hundreds of molecules compared to energies and gradients for hundreds of thousands of molecules for the other ML methods. The MOB-ML gradients are also shown to yield accurate optimized structures at a computational cost for the gradient evaluation that is comparable to a density-corrected density functional theory calculation.

16.
J Am Chem Soc ; 143(17): 6516-6527, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885285

RESUMO

The efficient copolymerization of acrylates with ethylene using Ni catalysts remains a challenge. Herein, we report two neutral Ni(II) catalysts (POP-Ni-py (1) and PONap-Ni-py (2)) that exhibit high thermal stability and significantly higher incorporation of polar monomer (for 1) or improved resistance to tert-butylacrylate (tBA)-induced chain transfer (for 2), in comparison to previously reported catalysts. Nickel alkyl complexes generated after tBA insertion, POP-Ni-CCO(py) (3) and PONap-Ni-CCO(py) (4), were isolated and, for the first time, characterized by crystallography. Weakened lutidine vs pyridine coordination in 2-lut facilitated the isolation of a N-donor-free adduct after acrylate insertion PONap-Ni-CCO (5) which represents a novel example of a four-membered chelate relevant to acrylate polymerization catalysis. Experimental kinetic studies of six cases of monomer insertion with aforementioned nickel complexes indicate that pyridine dissociation and monomer coordination are fast relative to monomer migratory insertion and that monomer enchainment after tBA insertion is the rate limiting step of copolymerization. Further evaluation of monomer insertion using density functional theory studies identified a cis-trans isomerization via Berry-pseudorotation involving one of the pendant ether groups as the rate-limiting step for propagation, in the absence of a polar group at the chain end. The energy profiles for ethylene and tBA enchainments are in qualitative agreement with experimental measurements.

17.
J Phys Chem Lett ; 12(7): 1991-1996, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33596383

RESUMO

We study nuclear quantum effects in H/D sticking to graphene, comparing scattering experiments at near-zero coverage with classical, quantized, and transition-state calculations. The experiment shows H/D sticking probabilities that are indistinguishable from one another and markedly smaller than those expected from a consideration of zero-point energy shifts of the chemisorption transition state. Inclusion of dynamical effects and vibrational anharmonicity via ring-polymer molecular dynamics (RPMD) yields results that are in good agreement with the experimental results. RPMD also reveals that nuclear quantum effects, while modest, arise primarily from carbon and not from H/D motion, confirming the importance of a C atom rehybridization mechanism associated with H/D sticking on graphene.

18.
J Chem Phys ; 154(6): 064108, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588560

RESUMO

Molecular-orbital-based machine learning (MOB-ML) provides a general framework for the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. The application of Nesbet's theorem makes it possible to recast a typical extrapolation task, training on correlation energies for small molecules and predicting correlation energies for large molecules, into an interpolation task based on the properties of orbital pairs. We demonstrate the importance of preserving physical constraints, including invariance conditions and size consistency, when generating the input for the machine learning model. Numerical improvements are demonstrated for different datasets covering total and relative energies for thermally accessible organic and transition-metal containing molecules, non-covalent interactions, and transition-state energies. MOB-ML requires training data from only 1% of the QM7b-T dataset (i.e., only 70 organic molecules with seven and fewer heavy atoms) to predict the total energy of the remaining 99% of this dataset with sub-kcal/mol accuracy. This MOB-ML model is significantly more accurate than other methods when transferred to a dataset comprising of 13 heavy atom molecules, exhibiting no loss of accuracy on a size intensive (i.e., per-electron) basis. It is shown that MOB-ML also works well for extrapolating to transition-state structures, predicting the barrier region for malonaldehyde intramolecular proton-transfer to within 0.35 kcal/mol when only trained on reactant/product-like structures. Finally, the use of the Gaussian process variance enables an active learning strategy for extending the MOB-ML model to new regions of chemical space with minimal effort. We demonstrate this active learning strategy by extending a QM7b-T model to describe non-covalent interactions in the protein backbone-backbone interaction dataset to an accuracy of 0.28 kcal/mol.

19.
J Chem Phys ; 154(2): 024106, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445902

RESUMO

Recent work shows that strong stability and dimensionality freedom are essential for robust numerical integration of thermostatted ring-polymer molecular dynamics (T-RPMD) and path-integral molecular dynamics, without which standard integrators exhibit non-ergodicity and other pathologies [R. Korol et al., J. Chem. Phys. 151, 124103 (2019) and R. Korol et al., J. Chem. Phys. 152, 104102 (2020)]. In particular, the BCOCB scheme, obtained via Cayley modification of the standard BAOAB scheme, features a simple reparametrization of the free ring-polymer sub-step that confers strong stability and dimensionality freedom and has been shown to yield excellent numerical accuracy in condensed-phase systems with large time steps. Here, we introduce a broader class of T-RPMD numerical integrators that exhibit strong stability and dimensionality freedom, irrespective of the Ornstein-Uhlenbeck friction schedule. In addition to considering equilibrium accuracy and time step stability as in previous work, we evaluate the integrators on the basis of their rates of convergence to equilibrium and their efficiency at evaluating equilibrium expectation values. Within the generalized class, we find BCOCB to be superior with respect to accuracy and efficiency for various configuration-dependent observables, although other integrators within the generalized class perform better for velocity-dependent quantities. Extensive numerical evidence indicates that the stated performance guarantees hold for the strongly anharmonic case of liquid water. Both analytical and numerical results indicate that BCOCB excels over other known integrators in terms of accuracy, efficiency, and stability with respect to time step for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...