Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(24): 246801, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286746

RESUMO

We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

2.
Phys Rev Lett ; 119(19): 196801, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219509

RESUMO

When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

3.
Phys Rev Lett ; 111(13): 136807, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116806

RESUMO

We investigate the effect of interactions on shot noise in ν=2 quantum Hall edges, where a repulsive coupling between copropagating edge modes is expected to give rise to charge fractionalization. Using the method of nonequilibrium bosonization, we find that even asymptotically the edge distribution function depends in a sensitive way on the interaction strength between the edge modes. We compute shot noise and the Fano factor from the asymptotic distribution function, and from comparison with a reference model of fractionalized excitations, we find that the Fano factor can be close to the value of the fractionalized charge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...