Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(16): 11237-11249, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37506293

RESUMO

Growth differentiation factor 15 (GDF15) is a contributor to nausea, emesis, and anorexia following chemotherapy via binding to the GFRAL-RET receptor complex expressed in hindbrain neurons. Therefore, GDF15-mediated GFRAL-RET signaling is a promising target for improving treatment outcomes for chemotherapy patients. We developed peptide-based antagonists of GFRAL that block GDF15-mediated RET recruitment. Our initial library screen led to five novel peptides. Surface plasmon resonance and flow cytometric analyses of the most efficacious of this group, termed GRASP, revealed its capacity to bind to GFRAL. In vivo studies in rats revealed that GRASP could attenuate GDF15-induced nausea and anorexia resulting from cisplatin. Combined with Ondansetron, GRASP led to an even greater attenuation of the anorectic effects of cisplatin compared to either agent alone. Our results highlight the beneficial effects of GRASP as an agent to combat chemotherapy-induced malaise. GRASP may also be effective in other conditions associated with elevated levels of GDF15.


Assuntos
Fator 15 de Diferenciação de Crescimento , Animais , Ratos , Anorexia/metabolismo , Membrana Celular/metabolismo , Cisplatino/uso terapêutico , Fator 15 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia
2.
Sci Rep ; 13(1): 9554, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308546

RESUMO

Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Neuropeptídeos , Humanos , Animais , Ratos , Controle Glicêmico , Redução de Peso , Peptídeo YY
3.
Neurosci Biobehav Rev ; 131: 1169-1179, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715149

RESUMO

The widespread misuse of opioids and opioid use disorder (OUD) together constitute a major public health crisis in the United States. The greatest challenge for successfully treating OUD is preventing relapse. Unfortunately, there are few FDA-approved medications to treat OUD and, while effective, these pharmacotherapies are limited by high relapse rates. Thus, there is a critical need for conceptually new approaches to developing novel medications to treat OUD. Here, we review an emerging preclinical literature that suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists could be re-purposed for treating OUD. Potential limitations of this approach are also discussed along with an alternative strategy that involves simultaneously targeting and activating GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) in the brain using a novel monomeric dual agonist peptide. Recent studies indicate that this combinatorial pharmacotherapy approach attenuates voluntary fentanyl taking and seeking in rats without producing adverse effects associated with GLP-1R agonist monotherapy alone. While future studies are required to comprehensively determine the behavioral effects of GLP-1R agonists and dual agonists of GLP-1Rs and Y2Rs in rodent models of OUD, these provocative preclinical findings highlight a potential new GLP-1R-based approach to preventing relapse in humans with OUD.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Transtornos Relacionados ao Uso de Opioides , Receptores de Neuropeptídeo Y/agonistas , Animais , Fentanila , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos
4.
Neuropharmacology ; 192: 108599, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965397

RESUMO

There has been a dramatic increase in illicit fentanyl use in the United States over the last decade. In 2018, more than 31,000 overdose deaths involved fentanyl or fentanyl analogs, highlighting an urgent need to identify effective treatments for fentanyl use disorder. An emerging literature shows that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate the reinforcing efficacy of drugs of abuse. However, the effects of GLP-1R agonists on fentanyl-mediated behaviors are unknown. The first goal of this study was to determine if the GLP-1R agonist exendin-4 reduced fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, an animal model of relapse, in rats. We found that systemic exendin-4 attenuated fentanyl taking and seeking at doses that also produced malaise-like effects in rats. To overcome these adverse effects and enhance the clinical potential of GLP-1R agonists, we recently developed a novel dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs), GEP44, that does not produce nausea-like behavior in drug-naïve rats or emesis in drug-naïve shrews. The second goal of this study was to determine if GEP44 reduced fentanyl self-administration and reinstatement with fewer adverse effects compared to exendin-4 alone. In contrast to exendin-4, GEP44 attenuated opioid taking and seeking at a dose that did not suppress food intake or produce adverse malaise-like effects in fentanyl-experienced rats. Taken together, these findings indicate a novel role for GLP-1Rs and Y2Rs in fentanyl reinforcement and highlight a potential new therapeutic approach to treating opioid use disorders.


Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento Aditivo/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Fentanila/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptores de Neuropeptídeo Y/agonistas , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/fisiologia , Exenatida/farmacologia , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/metabolismo , Autoadministração
5.
J Med Chem ; 64(2): 1127-1138, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33449689

RESUMO

There is a critical unmet need for therapeutics to treat the epidemic of comorbidities associated with obesity and type 2 diabetes, ideally devoid of nausea/emesis. This study developed monomeric peptide agonists of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y2 receptor (Y2-R) based on exendin-4 (Ex-4) and PYY3-36. A novel peptide, GEP44, was obtained via in vitro receptor screens, insulin secretion in islets, stability assays, and in vivo rat and shrew studies of glucoregulation, weight loss, nausea, and emesis. GEP44 in lean and diet-induced obese rats produced greater reduction in body weight compared to Ex-4 without triggering nausea associated behavior. Studies in the shrew demonstrated a near absence of emesis for GEP44 in contrast to Ex-4. Collectively, these data demonstrate that targeting GLP-1R and Y2-R with chimeric single peptides offers a route to new glucoregulatory treatments that are well-tolerated and have improved weight loss when compared directly to Ex-4.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/metabolismo , Náusea/tratamento farmacológico , Receptores de Neuropeptídeo Y/agonistas , Vômito/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Ligação Competitiva , Glicemia/metabolismo , Exenatida/química , Humanos , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeo YY/química , Ratos , Ratos Sprague-Dawley , Musaranhos , Relação Estrutura-Atividade
6.
Bio Protoc ; 10(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32775537

RESUMO

Stimulation of G protein-coupled receptors (GPCR) by hormones and neurotransmitters elicits cellular responses, many of which result from alterations in the concentrations of cytosolic cAMP and Ca2+. Here, we describe a microplate reader fluorescence resonance energy transfer (FRET) assay that uses the genetically encoded biosensors H188 and YC3.60 so that it is possible to monitor the kinetics with which alterations of [cAMP] or [Ca2+] occur in monolayers or suspensions of living cells exposed to GPCR agonists. This protocol uses HEK293 cell lines doubly transfected with a FRET biosensor and a recombinant GPCR of interest (e.g., glucagon receptors, CCK2 receptors, or NPY2R receptors). The protocol allows for rapid screening of small molecule GPCR agonists and antagonists, and it is also useful for discovery of synthetic mono-, dual-, and tri- agonist peptides with GPCR activating properties.

7.
RSC Med Chem ; 11(9): 1048-1052, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479697

RESUMO

Fenretinide is a synthetic retinoid pharmaceutical linked to ceramide build-up in vivo. Saposin D is an intralysosomal protein necessary for ceramide binding/degradation. We show, via electronic absorption spectroscopy, fluorescence spectroscopy, and ceramide hydrolysis assays, that fenretinide is bound by saposin D {K a = (1.45 ± 0.49) × 105 M-1}, and affects ceramide solubilization/degradation.

9.
J Biol Chem ; 294(10): 3514-3531, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622136

RESUMO

G protein-coupled receptors (GPCRs) for glucagon (GluR) and glucagon-like peptide-1 (GLP-1R) are normally considered to be highly selective for glucagon and GLP-1, respectively. However, glucagon secreted from pancreatic α-cells may accumulate at high concentrations to exert promiscuous effects at the ß-cell GLP-1R, as may occur in the volume-restricted microenvironment of the islets of Langerhans. Furthermore, systemic administration of GluR or GLP-1R agonists and antagonists at high doses may lead to off-target effects at other receptors. Here, we used molecular modeling to evaluate data derived from FRET assays that detect cAMP as a read-out for GluR and GLP-1R activation. This analysis established that glucagon is a nonconventional GLP-1R agonist, an effect inhibited by the GLP-1R orthosteric antagonist exendin(9-39) (Ex(9-39)). The GluR allosteric inhibitors LY2409021 and MK 0893 antagonized glucagon and GLP-1 action at the GLP-1R, whereas des-His1-[Glu9]glucagon antagonized glucagon action at the GluR, while having minimal inhibitory action versus glucagon or GLP-1 at the GLP-1R. When testing Ex(9-39) in combination with des-His1-[Glu9]glucagon in INS-1 832/13 cells, we validated a dual agonist action of glucagon at the GluR and GLP-1R. Hybrid peptide GGP817 containing glucagon fused to a fragment of peptide YY (PYY) acted as a triagonist at the GluR, GLP-1R, and neuropeptide Y2 receptor (NPY2R). Collectively, these findings provide a new triagonist strategy with which to target the GluR, GLP-1R, and NPY2R. They also provide an impetus to reevaluate prior studies in which GluR and GLP-1R agonists and antagonists were assumed not to exert promiscuous actions at other GPCRs.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptores de Glucagon/agonistas , Receptores de Glucagon/antagonistas & inibidores , Sequência de Aminoácidos , Descoberta de Drogas , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Conformação Proteica , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...