Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(29): 24812-24820, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28657706

RESUMO

A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

2.
Science ; 355(6329): 1028, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28280171

Assuntos
Zeolitas , Catálise
3.
Dalton Trans ; 43(27): 10617-27, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24835643

RESUMO

The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.

4.
J Am Chem Soc ; 136(6): 2511-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24451039

RESUMO

Novel layered zeolitic organic-inorganic materials have been synthesized using a two-dimensional zeolite precursor IPC-1P prepared by a top-down approach from zeolite UTL. The formation of porous materials containing organic linkers or polyhedral oligomeric siloxane covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2/Ar sorption analysis, XRD, (29)Si and (13)C NMR, TEM). The organic-inorganic porous hybrids obtained by intercalation with silsesquioxane posessed layered morphology and contained large crystalline domains. The hybrids exhibited mesoporous or hierarchical micro-/mesoporous systems, stable up to 350 °C. Textural properties of the formed zeolitic organic-inorganic materials can be controlled by varying the linker or synthetic conditions over a broad range. Surface areas and pore volumes of synthesized hybrids significantly exceed those for parent zeolite UTL and corresponding swollen material; the amount of micropores increased with increasing rigidity and size of the organic linker in the order biphenyl > phenylene > ethanediyl.

5.
Chem Soc Rev ; 42(9): 3956-76, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23132427

RESUMO

The discovery of ordered mesoporous materials has opened great opportunities for new applications in heterogeneous catalysis, thanks to their hitherto unprecedented intrinsic structural features. Evidence shows that, however, these materials have not met the researchers' expectations mainly because of the severe limitations related to the strength of acid sites and to the thermal/hydrothermal stability, significantly lower than those of zeolites and due to the amorphous nature of the mesostructured materials. These features are highlighted in the first part of this review, where the peculiarities of mesostructured materials are compared with those of zeolite catalysts in some reactions of industrial interest. New synthesis strategies, especially designed for preparing materials with improved physico-chemical and textural properties, together with the catalytic features of the resulting materials, are described and discussed in the second part of the review.


Assuntos
Zeolitas/química , Catálise , Tamanho da Partícula , Porosidade , Propriedades de Superfície
6.
Chem Commun (Camb) ; 48(59): 7356-8, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22717682

RESUMO

ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type.

8.
ChemSusChem ; 1(6): 548-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18702154

RESUMO

The activity of different platinum-loaded zeolites (Mordenite, ZSM-12, ZSM-5, ZSM-23) was investigated in the hydroconversion of methylcyclohexane (MCH), in the context of upgrading highly aromatic distillates for fuel blending. In all cases, conversion of MCH proceeds according to a pathway where the primary products are a mixture of dimethylcyclopentanes and ethylcyclopentane formed by isomerization and ring contraction of MCH. The primary products undergo consecutive ring-opening reactions with formation of n- and isoheptanes. The latter further react to form lower-molecular-weight n- and isoalkanes. The selectivity and distribution of products deriving from ring-contraction and ring-opening reactions are strongly affected by the pore size and topology of the zeolites. ZSM-5 exhibits a strong reactant shape-selectivity effect on ring-opening products. The evaluated zeolites show the following order of activity in the conversion of methylcyclohexane: Mordenite>ZSM-12>ZSM-5>ZSM-23.


Assuntos
Cicloexanos/química , Platina/química , Zeolitas/química , Catálise , Concentração de Íons de Hidrogênio , Porosidade
9.
J Am Chem Soc ; 128(5): 1450-1, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16448106

RESUMO

Progressive isomorphous incorporation of TiIV (or BIII) heteroatoms into the MFI structure of as-synthesized silicalite-1 caused a decrease in the amount of siloxy groups (anions), requisite for counter-balancing the structural directing agent (cation), as determined using 1H MAS NMR to quantify the silanol protons H-bonded to the siloxy oxygen. This revealed the negative charge on the incorporated heteroatoms, identifying them as TiO5 (or BO4) sites.

11.
Inorg Chem ; 36(4): 571-575, 1997 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29019696

RESUMO

The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al13 or [AlO4Al12(OH)24(OH2)12]7+, were examined by performing 27Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L-1) of AlCl3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe3+, Zn2+, Ga3+, In3+, Sn2+, La3+, and Bi3+, were subjected to forced hydrolysis by addition of NaOH (1.0 mol L-1) until OH/(Al + M) = 2.25, and the kinetics of Al13 formation and disappearance with aging at 80 °C was monitored by 27Al NMR spectroscopy. Al13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10-2 h-1 to form a species referred to as AlP2. Only the solutions containing Ga3+ and Sn2+ exhibited faster Al13 conversion rates. GaAl12 forms quickly at 80 °C (k = 0.54 h-1) and is more stable than AlP2. Sn2+ apparently promotes AlP2 formation (k = 0.38 h-1). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, In3+, La3+, or Ce3+ at 25 °C or M = Co2+ or La3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al13 and GaAl12. Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al13 and GaAl12 are as follows: Na[AlO4Al12(OH)24(H2O)12](SO4)4·10H2O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO4Al12(OH)24(H2O)12](SO4)4·10H2O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl12 cannot be rationalized in terms of the overall geometric considerations, as suggested by others. Solid state NMR also shows the coordination symmetries of the outer 12 Al nuclei in both clusters to be similar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...