Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 16(1): 126-133, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573831

RESUMO

A fundamental question in neuroscience is how neural networks generate behavior. The lack of genetic tools and unique promoters to functionally manipulate specific neuronal subtypes makes it challenging to determine the roles of individual subtypes in behavior. We describe a compressed sensing-based framework in combination with non-specific genetic tools to infer candidate neurons controlling behaviors with fewer measurements than previously thought possible. We tested this framework by inferring interneuron subtypes regulating the speed of locomotion of the nematode Caenorhabditis elegans. We developed a real-time stabilization microscope for accurate long-term, high-magnification imaging and targeted perturbation of neural activity in freely moving animals to validate our inferences. We show that a circuit of three interconnected interneuron subtypes, RMG, AVB and SIA control different aspects of locomotion speed as the animal navigates its environment. Our work suggests that compressed sensing approaches can be used to identify key nodes in complex biological networks.


Assuntos
Caenorhabditis elegans/fisiologia , Rede Nervosa , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Interneurônios/fisiologia , Locomoção , Microscopia/métodos
2.
Dev Cell ; 24(1): 64-75, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23328399

RESUMO

Biological systems may perform reproducibly to generate invariant outcomes, despite external or internal noise. One example is the C. elegans vulva, in which the final cell fate pattern is remarkably robust. Although this system has been extensively studied and the molecular network underlying cell fate specification is well understood, very little is known in quantitative terms. Here, through pathway dosage modulation and single molecule fluorescence in situ hybridization, we show that the system can tolerate a 4-fold variation in genetic dose of the upstream signaling molecule LIN-3/epidermal growth factor (EGF) without phenotypic change in cell fate pattern. Furthermore, through tissue-specific dosage perturbations of the EGF and Notch pathways, we determine the first-appearing patterning errors. Finally, by combining different doses of both pathways, we explore how quantitative pathway interactions influence system behavior. Our results highlight the feasibility and significance of launching experimental studies of robustness and quantitative network analysis in genetically tractable, multicellular eukaryotes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Indução Embrionária , Epistasia Genética , Transdução de Sinais , Vulva/metabolismo , Animais , Padronização Corporal , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Linhagem da Célula , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Dosagem de Genes , Hibridização in Situ Fluorescente , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Vulva/citologia
3.
Curr Biol ; 21(7): 527-38, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21458263

RESUMO

BACKGROUND: Biological networks experience quantitative change in response to environmental and evolutionary variation. Computational modeling allows exploration of network parameter space corresponding to such variations. The intercellular signaling network underlying Caenorhabditis vulval development specifies three fates in a row of six precursor cells, yielding a quasi-invariant 3°3°2°1°2°3° cell fate pattern. Two seemingly conflicting verbal models of vulval precursor cell fate specification have been proposed: sequential induction by the EGF-MAP kinase and Notch pathways, or morphogen-based induction by the former. RESULTS: To study the mechanistic and evolutionary system properties of this network, we combine experimental studies with computational modeling, using a model that keeps the network architecture constant but varies parameters. We first show that the Delta autocrine loop can play an essential role in 2° fate specification. With this autocrine loop, the same network topology can be quantitatively tuned to use in the six-cell-row morphogen-based or sequential patterning mechanisms, which may act singly, cooperatively, or redundantly. Moreover, different quantitative tunings of this same network can explain vulval patterning observed experimentally in C. elegans, C. briggsae, C. remanei, and C. brenneri. We experimentally validate model predictions, such as interspecific differences in isolated vulval precursor cell behavior and in spatial regulation of Notch activity. CONCLUSIONS: Our study illustrates how quantitative variation in the same network comprises developmental patterning modes that were previously considered qualitatively distinct and also accounts for evolution among closely related species.


Assuntos
Comunicação Autócrina , Padronização Corporal , Caenorhabditis/embriologia , Caenorhabditis/metabolismo , Transdução de Sinais , Animais , Evolução Biológica , Caenorhabditis/genética , Caenorhabditis elegans/metabolismo , Simulação por Computador , Indução Embrionária , Fator de Crescimento Epidérmico/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Receptor Notch1/metabolismo , Vulva/citologia , Vulva/embriologia
4.
Genes Dev ; 22(21): 3064-75, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18981482

RESUMO

Many biological systems produce an invariant output when faced with stochastic or environmental variation. This robustness of system output to variation affecting the underlying process may allow for "cryptic" genetic evolution within the system without change in output. We studied variation of cell fate patterning of Caenorhabditis elegans vulva precursors, a developmental system that relies on a simple intercellular signaling network and yields an invariant output of cell fates and lineages among C. elegans wild isolates. We first investigated the system's genetic variation in C. elegans by means of genetic tools and cell ablation to break down its buffering mechanisms. We uncovered distinct architectures of quantitative variation along the Ras signaling cascade, including compensatory variation, and differences in cell sensitivity to induction along the anteroposterior axis. In the unperturbed system, we further found variation between isolates in spatio-temporal dynamics of Ras pathway activity, which can explain the phenotypic differences revealed upon perturbation. Finally, the variation mostly affects the signaling pathways in a tissue-specific manner. We thus demonstrate and characterize microevolution of a developmental signaling network. In addition, our results suggest that the vulva genetic screens would have yielded a different mutation spectrum, especially for Wnt pathway mutations, had they been performed in another C. elegans genetic background.


Assuntos
Evolução Biológica , Caenorhabditis elegans/fisiologia , Animais , Caenorhabditis elegans/genética , Feminino , Mutação , Especificidade de Órgãos , Transdução de Sinais , Vulva/fisiologia
5.
Curr Top Dev Biol ; 80: 171-207, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17950375

RESUMO

We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Animais , Evolução Biológica , Caenorhabditis elegans/fisiologia , Ecossistema , Meio Ambiente , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Masculino , Fenótipo , Transdução de Sinais , Vulva/crescimento & desenvolvimento
6.
Dev Biol ; 282(2): 494-508, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15950613

RESUMO

Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactory/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved from pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrates and tunicates.


Assuntos
Evolução Biológica , Ciona intestinalis/embriologia , Ectoderma/fisiologia , Embrião não Mamífero/metabolismo , Genes/genética , Sistema Nervoso/embriologia , Animais , Biomarcadores/metabolismo , Ciona intestinalis/metabolismo , Análise por Conglomerados , Embrião não Mamífero/ultraestrutura , Perfilação da Expressão Gênica , Hibridização In Situ , Microscopia Eletrônica , Filogenia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...