Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Nat Commun ; 15(1): 5980, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013948

RESUMO

Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer.


Assuntos
Ácido Láctico , Imageamento por Ressonância Magnética , Fenótipo , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Humanos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/metabolismo , Próstata/patologia , Isótopos de Carbono , Gradação de Tumores , Mitocôndrias/metabolismo , L-Lactato Desidrogenase/metabolismo
3.
EBioMedicine ; 105: 105168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878676

RESUMO

BACKGROUND: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS: We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION: Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING: This work was supported by Cancer Research UK (grant no. C8221/A29017).


Assuntos
Análise da Randomização Mendeliana , Neoplasias da Próstata , Proteômica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Fatores de Risco , Proteômica/métodos , Estudo de Associação Genômica Ampla , Biomarcadores Tumorais/genética , Transcriptoma , Predisposição Genética para Doença , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Razão de Chances , Proteoma , Idade de Início
4.
Nat Commun ; 15(1): 4010, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750076

RESUMO

The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.


Assuntos
Bancos de Espécimes Biológicos , Exoma , Neoplasias , Proteômica , Humanos , Reino Unido/epidemiologia , Neoplasias/genética , Neoplasias/sangue , Neoplasias/epidemiologia , Fatores de Risco , Masculino , Feminino , Exoma/genética , Estudos Prospectivos , Pessoa de Meia-Idade , Proteínas Sanguíneas/genética , Idoso , Sequenciamento do Exoma , Predisposição Genética para Doença , Incidência , Biobanco do Reino Unido
5.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770683

RESUMO

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Assuntos
Carcinogênese , Membrana Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endocitose , Transporte Proteico , Complexo de Golgi/metabolismo
6.
Prostate ; 84(10): 977-990, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654435

RESUMO

BACKGROUND: It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin-fixed paraffin-embedded (FFPE) prostate biopsies from cohorts with post-radiotherapy (RT) long-term clinical follow-up has been limited. Utilizing parallel sequencing modalities, we performed a proof-of-principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post-RT, and (iii) de novo metastatic PCa (mPCa). METHODS: A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow-up (diagnosed 2009-2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3'RNA sequencing (3'RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). RESULTS: Eighteen of 19 samples provided useable 3'RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression-free survival post-RT (p < 0.0001) in an external cohort. CONCLUSIONS: 3'RNAseq, nanoString and 850k-methylation analyses are each achievable from historical FFPE diagnostic pretreatment prostate biopsies, unlocking the potential to utilize large cohorts of historic clinical samples. Profiling similarities between individuals with pPCa and mPCa suggests biological similarities and historical radiological staging limitations, which warrant further investigation.


Assuntos
Progressão da Doença , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Idoso , Pessoa de Meia-Idade , Biópsia , Genômica , Próstata/patologia , Metástase Neoplásica , Estudos de Coortes
7.
FASEB J ; 38(8): e23628, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661032

RESUMO

Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.


Assuntos
Quinase 9 Dependente de Ciclina , Imunidade Inata , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo
8.
Genome Med ; 16(1): 35, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374116

RESUMO

BACKGROUND: Extension of prostate cancer beyond the primary site by local invasion or nodal metastasis is associated with poor prognosis. Despite significant research on tumour evolution in prostate cancer metastasis, the emergence and evolution of cancer clones at this early stage of expansion and spread are poorly understood. We aimed to delineate the routes of evolution and cancer spread within the prostate and to seminal vesicles and lymph nodes, linking these to histological features that are used in diagnostic risk stratification. METHODS: We performed whole-genome sequencing on 42 prostate cancer samples from the prostate, seminal vesicles and lymph nodes of five treatment-naive patients with locally advanced disease. We spatially mapped the clonal composition of cancer across the prostate and the routes of spread of cancer cells within the prostate and to seminal vesicles and lymph nodes in each individual by analysing a total of > 19,000 copy number corrected single nucleotide variants. RESULTS: In each patient, we identified sample locations corresponding to the earliest part of the malignancy. In patient 10, we mapped the spread of cancer from the apex of the prostate to the seminal vesicles and identified specific genomic changes associated with the transformation of adenocarcinoma to amphicrine morphology during this spread. Furthermore, we show that the lymph node metastases in this patient arose from specific cancer clones found at the base of the prostate and the seminal vesicles. In patient 15, we observed increased mutational burden, altered mutational signatures and histological changes associated with whole genome duplication. In all patients in whom histological heterogeneity was observed (4/5), we found that the distinct morphologies were located on separate branches of their respective evolutionary trees. CONCLUSIONS: Our results link histological transformation with specific genomic alterations and phylogenetic branching. These findings have implications for diagnosis and risk stratification, in addition to providing a rationale for further studies to characterise the genetic changes causally linked to morphological transformation. Our study demonstrates the value of integrating multi-region sequencing with histopathological data to understand tumour evolution and identify mechanisms of prostate cancer spread.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Filogenia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Metástase Linfática/patologia , Glândulas Seminais/patologia
9.
World J Urol ; 42(1): 95, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386171

RESUMO

PURPOSE: The primary objective was to establish whether blood-based leucine-rich alpha-2-glycoprotein (LRG1) can predict outcomes in patients with locally advanced prostate cancer undergoing androgen-deprivation therapy (ADT) and radiotherapy (RT) and to determine how it may relate to 92 immune-oncology (I-O)-related proteins in this setting. METHODS: Baseline blood level of LRG1 from patients treated with ADT and RT enrolled in the CuPCa (n = 128) and IMRT (n = 81) studies was measured using ELISA. A longitudinal cohort with matched blood samples from start of ADT, start of RT, and end of RT protocol from 47 patients from the IMRT cohort was used to establish levels of I-O proteins by high-multiplexing Proximal Extension Assay by Olink Proteomics. Statistical analyses using Kaplan-Meier, Cox regression, and LIMMA analyses were applied to predict the prognostic value of LRG1 and its correlation to I-O proteins. RESULTS: High baseline levels of LRG1 predicted a low frequency of treatment failure in patients undergoing ADT + RT in both the CuPCa and the IMRT cohorts. LRG1 was moderately correlated with CD4, IL6, and CSF1. We identified I-O proteins predicting metastatic failure (MF) at different timepoints. CONCLUSION: LRG1 biomarker is associated with I-O proteins and can be used to improve stratification and monitoring of prostate cancer patients undergoing ADT + RT. This work will require further in-depth analyses in independent cohorts with treatment outcome data.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Antagonistas de Androgênios/uso terapêutico , Androgênios , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Oncologia
10.
Exp Hematol Oncol ; 13(1): 13, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291540

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD: OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS: We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION: These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.

11.
Br J Cancer ; 130(5): 741-754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216720

RESUMO

BACKGROUND: Peroxisomes are central metabolic organelles that have key roles in fatty acid homoeostasis. As prostate cancer (PCa) is particularly reliant on fatty acid metabolism, we explored the contribution of peroxisomal ß-oxidation (perFAO) to PCa viability and therapy response. METHODS: Bioinformatic analysis was performed on clinical transcriptomic datasets to identify the perFAO enzyme, 2,4-dienoyl CoA reductase 2 (DECR2) as a target gene of interest. Impact of DECR2 and perFAO inhibition via thioridazine was examined in vitro, in vivo, and in clinical prostate tumours cultured ex vivo. Transcriptomic and lipidomic profiling was used to determine the functional consequences of DECR2 inhibition in PCa. RESULTS: DECR2 is upregulated in clinical PCa, most notably in metastatic castrate-resistant PCa (CRPC). Depletion of DECR2 significantly suppressed proliferation, migration, and 3D growth of a range of CRPC and therapy-resistant PCa cell lines, and inhibited LNCaP tumour growth and proliferation in vivo. DECR2 influences cell cycle progression and lipid metabolism to support tumour cell proliferation. Further, co-targeting of perFAO and standard-of-care androgen receptor inhibition enhanced suppression of PCa cell proliferation. CONCLUSION: Our findings support a focus on perFAO, specifically DECR2, as a promising therapeutic target for CRPC and as a novel strategy to overcome lethal treatment resistance.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Metabolismo dos Lipídeos/genética , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Proliferação de Células , Ácidos Graxos
12.
Int J Cancer ; 154(5): 926-939, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767987

RESUMO

Magnetic resonance imaging (MRI) is increasingly used to triage patients for prostate biopsy. However, 9% to 24% of clinically significant (cs) prostate cancers (PCas) are not visible in MRI. We aimed to identify histomic and transcriptomic determinants of MRI visibility and their association to metastasis, and PCa-specific death (PCSD). We studied 45 radical prostatectomy-treated patients with csPCa (grade group [GG]2-3), including 30 with MRI-visible and 15 with MRI-invisible lesions, and 18 men without PCa. First, histological composition was quantified. Next, transcriptomic profiling was performed using NanoString technology. MRI visibility-associated differentially expressed genes (DEGs) and Reactome pathways were identified. MRI visibility was classified using publicly available genes in MSK-IMPACT and Decipher, Oncotype DX, and Prolaris. Finally, DEGs and clinical parameters were used to classify metastasis and PCSD in an external cohort, which included 76 patients with metastatic GG2-4 PCa, and 84 baseline-matched controls without progression. Luminal area was lower in MRI-visible than invisible lesions and low luminal area was associated with short metastasis-free and PCa-specific survival. We identified 67 DEGs, eight of which were associated with survival. Cell division, inflammation and transcriptional regulation pathways were upregulated in MRI-visible csPCas. Genes in Decipher, Oncotype DX and MSK-IMPACT performed well in classifying MRI visibility (AUC = 0.86-0.94). DEGs improved classification of metastasis (AUC = 0.69) and PCSD (AUC = 0.68) over clinical parameters. Our data reveals that MRI-visible csPCas harbor more aggressive histomic and transcriptomic features than MRI-invisible csPCas. Thus, targeted biopsy of visible lesions may be sufficient for risk stratification in patients with a positive MRI.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Prognóstico , Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Perfilação da Expressão Gênica , Estudos Retrospectivos
13.
Proc Natl Acad Sci U S A ; 120(49): e2312261120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011568

RESUMO

While radical prostatectomy remains the mainstay of prostate cancer (PCa) treatment, 20 to 40% of patients develop postsurgical biochemical recurrence (BCR). A particularly challenging clinical cohort includes patients with intermediate-risk disease whose risk stratification would benefit from advanced approaches that complement standard-of-care diagnostic tools. Here, we show that imaging tumor lactate using hyperpolarized 13C MRI and spatial metabolomics identifies BCR-positive patients in two prospective intermediate-risk surgical cohorts. Supported by spatially resolved tissue analysis of established glycolytic biomarkers, this study provides the rationale for multicenter trials of tumor metabolic imaging as an auxiliary tool to support PCa treatment decision-making.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/análise , Ácido Láctico , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Próstata/patologia , Prostatectomia/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos
14.
medRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790472

RESUMO

Background: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods: We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion: Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.

15.
Mol Cancer ; 22(1): 162, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789377

RESUMO

Genetic signatures have added a molecular dimension to prognostics and therapeutic decision-making. However, tumour heterogeneity in prostate cancer and current sampling methods could confound accurate assessment. Based on previously published spatial transcriptomic data from multifocal prostate cancer, we created virtual biopsy models that mimic conventional biopsy placement and core size. We then analysed the gene expression of different prognostic signatures (OncotypeDx®, Decipher®, Prostadiag®) using a step-wise approach with increasing resolution from pseudo-bulk analysis of the whole biopsy, to differentiation by tissue subtype (benign, stroma, tumour), followed by distinct tumour grade and finally clonal resolution. The gene expression profile of virtual tumour biopsies revealed clear differences between grade groups and tumour clones, compared to a benign control, which were not reflected in bulk analyses. This suggests that bulk analyses of whole biopsies or tumour-only areas, as used in clinical practice, may provide an inaccurate assessment of gene profiles. The type of tissue, the grade of the tumour and the clonal composition all influence the gene expression in a biopsy. Clinical decision making based on biopsy genomics should be made with caution while we await more precise targeting and cost-effective spatial analyses.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Biópsia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Genômica
16.
Int J Cancer ; 153(12): 1940-1941, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655960
17.
Br Dent J ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723311

RESUMO

Introduction Devon and Cornwall have been identified as 'dental deserts' with limited NHS dental access and high levels of oral health inequality. Challenges around recruitment and retention of the dental workforce have been acknowledged as an important contributory factor.Aims The aim of this research was to explore the experiences of dental practices within Devon and Cornwall in relation to recruitment and retention of the dental workforce.Method A self-administered, online questionnaire was used to explore various aspects of workforce recruitment and retention. The questionnaire included categorical rating scale and free-text question formats providing quantitative and qualitative data.Results In total, 106 dental practices responded to the survey, providing a response rate of 36%. The vast majority of respondents (94%) considered recruitment and retention to be a major barrier to delivering NHS services. Additionally, 77% of practices had a current staff vacancy, 57% had a dentist vacancy and 48% had a vacancy for dental nurses. Thematic analysis led to identification of four main themes which were considered to influence recruitment and retention: NHS system; economic challenges; logistics; and support networks.Conclusion A large number of dental practices in Devon and Cornwall are failing to operate at capacity due to workforce shortages, which is affecting access to services in both NHS and private practices. Recruitment and retention of dentists and dental nurses appears to be the most challenging factor, with NHS practices affected more than the private sector.

18.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628903

RESUMO

Prostate cancer is typically of acinar adenocarcinoma type but can occasionally present as neuroendocrine and/or ductal type carcinoma. These are associated with clinically aggressive disease, and the former often arises on a background of androgen deprivation therapy, although it can also arise de novo. Two prostate cancer cases were sequenced by exome capture from archival tissue. Case 1 was de novo small cell neuroendocrine carcinoma and ductal adenocarcinoma with three longitudinal samples over 5 years. Case 2 was a single time point after the development of treatment-related neuroendocrine prostate carcinoma. Case 1 showed whole genome doubling in all samples and focal amplification of AR in all samples except the first time point. Phylogenetic analysis revealed a common ancestry for ductal and small cell carcinoma. Case 2 showed 13q loss (involving RB1) in both adenocarcinoma and small cell carcinoma regions, and 3p gain, 4p loss, and 17p loss (involving TP53) in the latter. By using highly curated samples, we demonstrate for the first time that small-cell neuroendocrine and ductal prostatic carcinoma can have a common ancestry. We highlight whole genome doubling in a patient with prostate cancer relapse, reinforcing its poor prognostic nature.


Assuntos
Carcinoma de Células Acinares , Carcinoma Ductal , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Filogenia , Carcinoma Ductal/genética , Evolução Molecular
19.
Br Dent J ; 235(1): 24-28, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443223

RESUMO

Person-centred care (PCC) is acknowledged as a fundamental dimension of quality within health care and provides significant benefits for patients and clinicians. Models of PCC have primarily been developed from the medical literature, with limited consideration of their application within dentistry. The Personalised Care Institute was established to deliver education and training on PCC and is working with the Office of the Chief Dental Officer for England to develop resources on shared decision-making (SDM) to promote tailored recall intervals.This paper seeks to promote the value of PCC and SDM in delivering high-quality care but cautions against the use of generic models or training in view of the potential differences which may exist within dentistry, particularly general dental practice. The authors highlight the need to develop materials and training which are appropriate, contextualised and relevant to dentistry. The capacity and desire to deliver PCC is strongly influenced by the healthcare system which is in operation. The current units of dental activity (UDA) system operating in England would appear to act as a barrier to the delivery of PCC. Unless significant and rapid changes are introduced to the NHS Contract, UDA targets will continue to take precedence over PCC, SDM and tailored recall intervals.


Assuntos
Atenção à Saúde , Medicina Estatal , Humanos , Assistência Centrada no Paciente , Odontologia Geral , Qualidade da Assistência à Saúde
20.
BJU Int ; 132(5): 472-484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37410655

RESUMO

OBJECTIVE: To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS: A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS: The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS: Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...