Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1351777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576622

RESUMO

Introduction: Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods: Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results: Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion: Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Interleucina-17 , Monitorização Imunológica , Mucosa Respiratória
2.
Nat Commun ; 14(1): 5963, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749129

RESUMO

Mucosally active subunit vaccines are an unmet clinical need due to lack of licensed immunostimulants suitable for vaccine antigens. Here, we show that intranasal administration of liposomes incorporating: the Streptococcus pyogenes peptide antigen, J8; diphtheria toxoid as a source of T cell help; and the immunostimulatory glycolipid, 3D(6-acyl) PHAD (PHAD), is able to induce long-lived humoral and cellular immunity. Mice genetically deficient in either mucosal antibodies or total antibodies are protected against S. pyogenes respiratory tract infection. Utilizing IL-17-deficient mice or depleting cellular subsets using antibodies, shows that the cellular responses encompassing, CD4+ T cells, IL-17, macrophages and neutrophils have important functions in vaccine-mediated mucosal immunity. Overall, these data demonstrate the utility of a mucosal vaccine platform to deliver multi-pronged protective responses against a highly virulent pathogen.


Assuntos
Lipossomos , Streptococcus pyogenes , Camundongos , Animais , Neutrófilos , Interleucina-17 , Antígenos de Bactérias , Macrófagos , Administração Intranasal , Imunidade nas Mucosas , Vacinas de Subunidades Antigênicas , Camundongos Endogâmicos BALB C
3.
Clin Transl Immunology ; 10(3): e1260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732459

RESUMO

OBJECTIVES: A major COVID-19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2). These vaccines will also induce T-cell responses. However, concerns were raised that aberrant vaccine-induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. METHODS: We procured a series of overlapping 20-amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID-19 convalescent patients. Identified epitopes were conjugated to diphtheria-toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. RESULTS: Seven putative vaccine epitopes were identified. Memory B-cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. CONCLUSION: COVID-19 convalescent patients have SARS-CoV-2-specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope-specific antibodies synergistically block RBD-ACE2 interaction.

4.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622722

RESUMO

Infections with Streptococcus pyogenes and their sequelae are responsible for an estimated 18 million cases of serious disease with >700 million new primary cases and 500,000 deaths per year. Despite the burden of disease, there is currently no vaccine available for this organism. Here, we define a combination vaccine P*17/K4S2 comprising of 20-mer B-cell peptide epitopes, p*17 (a mutant derived from the highly conserved C3-repeat region of the M-protein), and K4S2 (derived from the streptococcal anti-neutrophil factor, Spy-CEP). The peptides are chemically conjugated to either diphtheria toxoid (DT) or a nontoxic mutant form of diphtheria toxin, CRM197. We demonstrate that a prime-pull immunization regimen involving two intramuscular inoculations with P*17/K4S2 adjuvanted with a two-component liposomal adjuvant system (CAF01; developed by Statens Serum Institut [SSI], Denmark), followed by an intranasal inoculation of unadjuvanted vaccine (in Tris) induces peptide- and S. pyogenes-binding antibodies and protects from mucosal and skin infection with hypervirulent covR/S mutant organisms. Prior vaccination with DT does not diminish the response to the conjugate peptide vaccines. Detailed Good Laboratory Practice (GLP) toxicological evaluation in male and female rats did not reveal any gross or histopathological adverse effects.IMPORTANCE A vaccine to control S. pyogenes infection is desperately warranted. S. pyogenes colonizes the upper respiratory tract (URT) and skin, from where it can progress to invasive and immune-mediated diseases. Global mortality estimates for S. pyogenes-associated diseases exceeds 500,000 deaths per year. S. pyogenes utilizes antigenic variation as a defense mechanism to circumvent host immune responses and thus a successful vaccine needs to provide strain-transcending and multicompartment (mucosal and skin) immunity. By defining highly conserved and protective epitopes from two critical virulence factors (M-protein and Spy-CEP) and combining them with a potent immunostimulant, CAF®01, we are addressing an unmet clinical need for a mucosally and skin-active subunit vaccine. We demonstrate that prime-pull immunization (2× intramuscular injections followed by intranasal immunization) promotes high sustained antibody levels in the airway mucosa and serum and protects against URT and invasive disease.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Epitopos de Linfócito B/imunologia , Imunidade nas Mucosas , Imunização/métodos , Lipossomos/química , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Epitopos de Linfócito B/genética , Feminino , Lipossomos/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus pyogenes/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
5.
Sci Rep ; 11(1): 127, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420258

RESUMO

We have developed two candidate vaccines to protect against multiple strains of Strep A infections. The candidates are combinatorial synthetic peptide vaccines composed of a M protein epitope (J8 or p*17) and a non-M protein epitope (K4S2). To enhance immunogenicity, each peptide is conjugated to the carrier protein CRM197 (CRM) and formulated with aluminium hydroxide adjuvant Alhydrogel (Alum) to make the final vaccines, J8-CRM + K4S2-CRM/Alum and p*17-CRM + K4S2-CRM/Alum. The safety and toxicity of each vaccine was assessed. Sprague Dawley rats were administered three intramuscular doses, over a six-week study with a 4-week recovery period. A control group received CRM only formulated with Alum (CRM/Alum). There was no evidence of systemic toxicity in the rats administered either vaccine. There was an associated increase in white blood cell, lymphocyte and monocyte counts, increased adrenal gland weights, adrenocortical hypertrophy, and increased severity of granulomatous inflammation at the sites of injection and the associated inguinal lymph nodes. These changes were considered non-adverse. All rats administered vaccine developed a robust and sustained immunological response. The absence of clinical toxicity and the development of an immunological response in the rats suggests that the vaccines are safe for use in a phase 1 clinical trial in healthy humans.


Assuntos
Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imunogenicidade da Vacina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/efeitos adversos , Streptococcus pyogenes/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos
7.
NPJ Vaccines ; 5(1): 74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802413

RESUMO

We evaluated vaccination against Streptococcus pyogenes with the candidate vaccine, J8-DT, delivered by a high-density microarray patch (HD-MAP). We showed that vaccination with J8-DT eluted from a coated HD-MAP (J8-DT/HD-MAP), induced similar total IgG responses to that generated by vaccination with J8-DT adjuvanted with Alum (J8-DT/Alum). We evaluated the effect of dose reduction and the number of vaccinations on the antibody response profile of vaccinated mice. A reduction in the number of vaccinations (from three to two) with J8-DT/HD-MAP induced comparable antibody responses to three vaccinations with intramuscular J8-DT/Alum. Vaccine-induced protection against an S. pyogenes skin challenge was assessed. J8-DT/HD-MAP vaccination led to a significant reduction in the number of S. pyogenes colony forming units in skin (92.9%) and blood (100%) compared to intramuscular vaccination with unadjuvanted J8-DT. The protection profile was comparable to that of intramuscular J8-DT/Alum. J8-DT/HD-MAP induced a shift in the antibody isotype profile, with a bias towards Th1-related isotypes, compared to J8-DT/Alum (Th2 bias). Based on the results of this study, the use of J8-DT/HD-MAP should be considered in future clinical development and control programs against S. pyogenes. Furthermore, the innate characteristics of the technology, such as vaccine stability and increased coverage, ease of use, reduction of sharp waste and the potential reduction of dose may be advantageous compared to current vaccination methods.

8.
Sci Adv ; 5(9): eaax3013, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517054

RESUMO

Invasive streptococcal disease (ISD) and toxic shock syndrome (STSS) result in over 160,000 deaths each year. We modelled these in HLA-transgenic mice infected with a clinically lethal isolate expressing Streptococcal pyrogenic exotoxin (Spe) C and demonstrate that both SpeC and streptococcal M protein, acting cooperatively, are required for disease. Vaccination with a conserved M protein peptide, J8, protects against STSS by causing a dramatic reduction in bacterial burden associated with the absence of SpeC and inflammatory cytokines in the blood. Furthermore, passive immunotherapy with antibodies to J8 quickly resolves established disease by clearing the infection and ablating the inflammatory activity of the M protein, which is further enhanced by addition of SpeC antibodies. Analysis of 77 recent isolates of Streptococcus pyogenes causing ISD, demonstrated that anti-J8 antibodies theoretically recognize at least 73, providing strong support for using antibodies to J8, with or without antibodies to SpeC, as a therapeutic approach.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Exotoxinas/imunologia , Antígenos HLA/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Animais , Antígenos HLA/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Choque Séptico/genética , Infecções Estreptocócicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...