Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 279(42): 43540-6, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15294902

RESUMO

Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome. Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase. In E. coli this enzyme is involved in O-antigen synthesis, but in mycobacteria it is required for the rhamnosyl-containing linker unit responsible for the attachment of the cell wall polymer mycolyl-arabinogalactan to the peptidoglycan. The M. tuberculosis wbbL homologue, encoded by Rv3265c, was shown to be capable of restoring an E. coli K12 strain containing an insertionally inactivated wbbL to O-antigen positive. Likewise, the E. coli wbbL gene allowed 2-20/32 to grow at higher non-permissive temperatures. The rhamnosyltransferase activity of M. tuberculosis WbbL was demonstrated in 2-20/32 as was the loss of this transferase activity in 2-20/32 at elevated temperatures. The wbbL of the temperature-sensitive mutant contained a single-base change that converted what was a proline in mc(2)155 to a serine residue. Exposure of 2-20/32 to higher non-permissive temperatures resulted in bacteria that could not be recovered at the lower permissive temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Galactanos/biossíntese , Hexosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Peptidoglicano/biossíntese , Sequência de Bases , Radioisótopos de Carbono , Divisão Celular , Sobrevivência Celular , Clonagem Molecular , Primers do DNA , Escherichia coli/genética , Cinética , Mutagênese , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Reação em Cadeia da Polimerase
2.
J Bacteriol ; 186(1): 8-14, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14679218

RESUMO

Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.


Assuntos
Aminoacil-tRNA Sintetases/genética , Methanococcaceae/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Meios de Cultura , Cisteína/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Methanococcaceae/genética , Aminoacil-RNA de Transferência/genética , Temperatura , Transformação Genética
3.
Antimicrob Agents Chemother ; 46(11): 3549-54, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12384363

RESUMO

Escherichia coli under-expressing lepB was utilized to test cellular inhibition of signal peptidase I (SPase). For the construction of a lepB regulatable strain, the E. coli lepB gene was cloned into pBAD, with expression dependent on L-arabinose. The chromosomal copy of lepB was replaced with a kanamycin resistance gene, which was subsequently removed. SPase production by the lepB regulatable strain in the presence of various concentrations of L-arabinose was monitored by Western blot analysis. At lower arabinose concentrations growth proceeded more slowly, possibly due to a decrease of SPase levels in the cells. A penem SPase inhibitor with little antimicrobial activity against E. coli when tested at 100 micro M was utilized to validate the cell-based system. Under-expression of lepB sensitized the cells to penem, with complete growth inhibition observed at 10 to 30 micro M. Growth was rescued by increasing the SPase levels. The cell-based assay was used to test cellular inhibition of SPase by compounds that inhibit the enzyme in vitro. MD1, MD2, and MD3 are SPase inhibitors with antimicrobial activity against Staphylococcus aureus, although they do not inhibit growth of E. coli. MD1 presented the best spectrum of antimicrobial activity. Both MD1 and MD2 prevented growth of E. coli under-expressing lepB in the presence of polymyxin B nonapeptide, with growth rescue observed when wild-type levels of SPase were produced. MD3 and MD4, a reactive analog of MD3, inhibited growth of E. coli under-expressing lepB. However, growth rescue in the presence of these compounds following increased lepB expression was observed only after prolonged incubation.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Western Blotting , Carbapenêmicos/farmacologia , Clonagem Molecular , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Plasmídeos/genética
4.
J Mol Biol ; 322(2): 273-9, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12217690

RESUMO

The oxazolidinone family is a new class of synthetic antibiotics that bind to the bacterial 50S ribosomal subunit. Two members of the family, linezolid and XA043, were examined for their effects on translational fidelity using a lacZ reporter gene in vivo. Both promoted highly significant frameshifting and nonsense suppression. Chloramphenicol, a peptidyl transferase inhibitor, affected translational fidelity in a similar fashion. Neither the oxazolidinones nor chloramphenicol stimulated misincorporation of amino acid residues at position 461 in the lacZ gene. In contrast, the aminoglycosides gentamicin and paromomycin, which interact with the decoding region of the 30S subunit, caused significant misincorporation but only modest increases in frameshifting or stop codon readthrough of the lacZ gene. We conclude that effects on translational fidelity may play a significant role in the mechanism of action of the oxazolidinones.


Assuntos
Cloranfenicol/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Oxazolidinonas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Acetamidas/farmacologia , Aminoácidos/metabolismo , Aminoglicosídeos , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Farmacorresistência Bacteriana , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Genes Reporter/genética , Óperon Lac/genética , Linezolida , Mutação de Sentido Incorreto/genética
5.
Nat Biotechnol ; 20(5): 478-83, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981561

RESUMO

As the global threat of drug- and antibiotic-resistant bacteria continues to rise, new strategies are required to advance the drug discovery process. This work describes the construction of an array of Escherichia coli strains for use in whole-cell screens to identify new antimicrobial compounds. We used the recombination systems from bacteriophages lambda and P1 to engineer each strain in the array for low-level expression of a single, essential gene product, thus making each strain hypersusceptible to specific inhibitors of that gene target. Screening of nine strains from the array in parallel against a large chemical library permitted identification of new inhibitors of bacterial growth. As an example of the target specificity of the approach, compounds identified in the whole-cell screen for MurA inhibitors were also found to block the biochemical function of the target when tested in vitro.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Alquil e Aril Transferases/metabolismo , Alelos , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Modelos Genéticos , Plasmídeos/metabolismo , Conformação Proteica , Recombinação Genética , Fatores de Tempo
6.
Nutr Res Rev ; 15(1): 67-90, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19087399

RESUMO

Mechanistic models of microbial metabolism in the rumen aim at an improved understanding and integration for research purposes or at an improved prediction for practical purposes. The standard way of representing such models is the rate : state formalism. The system is defined by a number of state variables and a set of differential equations describe the change of the state variables with time. Three different types of solution to these dynamic models are distinguished, and examples of these solutions are described to illustrate the applications and contributions of dynamic modelling in the study of the rumen microbial ecosystem. Type I solutions are obtained when the system is in steady state and the differential equations are solved by setting the differentials to zero. An application of the type I solution is the indirect approach to quantifying the fibrolytic anaerobic fungi in the rumen. The solutions of the model describing the alternate life cycle of rumen fungi, with its free-swimming dispersal and particle-attached stages, appear to be consistent with ruminal and faecal observations. Type II solutions are obtained when the system is not in steady state but the differential equations can be integrated analytically. An application of this type of solution is the quantification of the growth and growth yield in batch cultures. Such models help to quantify the degradation of substrates in the rumen and to elucidate the interactions between groups of rumen micro-organisms. Type III solutions are obtained when the system is not in steady state and when the differential equations have to be solved numerically. Applications of the type III solutions are the rumen simulation models that describe substrate degradation, endproduct formation and microbial metabolism in an integrated manner. To illustrate this type III solution, a model of lactic acid metabolism in the rumen is defined, and its contribution to understanding of the paths and rates of lactic acid disappearance described. It is essential that the models are based on sound mathematical and biological principles. However, the various applications described in the paper show that models need not necessarily be complex and very detailed to contribute to better understanding.

7.
Microbiology (Reading) ; 143 ( Pt 3): 937-945, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9084178

RESUMO

The mycobacterial cell wall core consists of an outer lipid layer of mycolic acids connected, via arabinogalactan polysaccharide, to an inner peptidoglycan layer. An alpha-L-rhamnopyranosyl residue has been shown to be a key component linking the mycolated arabinogalactan to the peptidoglycan and, therefore, the biosynthesis of L-rhamnose (Rha) in mycobacteria was investigated as the first step of developing inhibitors of its biosynthesis. Biochemical assays were used to show that dTDP-Rha was synthesized in Mycobacterium smegmatis from alpha-D-glucose 1-phosphate (alpha-D-Glc-1-P) and dTTP by the same four enzymic steps used by Escherichia coli and other bacteria. PCR primers based on consensus regions of known sequences of the first enzyme in this series, alpha-D-Glc-1-P thymidylytransferase (RfbA) were used to amplify rfbA DNA from M. tuberculosis. The entire rfbA gene was then cloned and sequenced. The deduced amino acid sequence revealed a 31362 Da putative protein product which showed similarity to RfbA proteins of other bacteria (59% identity to that found in E. coli). Sequencing of DNA flanking the rfbA gene did not reveal any of the other rfb genes required for dTDP-Rha biosynthesis. Therefore, the four Rha biosynthetic genes are not clustered in M. tuberculosis. The enzymic activity of the sequenced gene product was confirmed by transformation of E. coli with pBluescript KS(-) containing the rfbA gene from M. tuberculosis. Analysis of enzyme extracts prepared from this transformant revealed an 11-fold increase in alpha-D-Glc-1-P thymidylyltransferase activity.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mycobacterium tuberculosis/enzimologia , Nucleotidiltransferases/genética , Ramnose/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Ramnose/genética , Alinhamento de Sequência , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA