Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(4): 937-947, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37788791

RESUMO

The pharmaceutical industry has shown keen interest in developing small-scale modular manufacturing systems for producing medicinal products. These systems offer agile and flexible manufacturing, and are well-suited for use in situations requiring rapid production of drugs such as pandemics and humanitarian disasters. The creation of such systems requires the development of modular facilities for making solid oral drug products. In recent years, however, the development of such facilities has seen limited progress. This study presents a development of a prototype modular system that uses drop on demand (DoD) printing to produce personalized solid oral drug products. The system's operation is demonstrated for manufacturing mini-tablets, a category of pediatric drug products, in continuous and semi-batch modes. In this process, the DoD printer is used to generate molten formulation drops that are solidified into mini-tablets. These dosages are then extracted, washed and dried in a continuous filtration and drying unit which is integrated with the printer. Process monitoring tools are also incorporated in the system to track the critical quality attributes of the product and the critical process parameters of the manufacturing operation in real time. Future areas of innovation are also proposed to improve this prototype unit and to enable the development of advanced drug manufacturing systems based on this platform.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Humanos , Criança , Comprimidos , Preparações Farmacêuticas
2.
Dysphagia ; 38(3): 756-767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36097215

RESUMO

Over the past four decades, our understanding of swallowing neural control has expanded dramatically. However, until recently, advances in rehabilitation approaches for dysphagia have not kept pace, with a persistent focussing on strengthening peripheral muscle. This approach is no doubt very appropriate for some if not many of our patients. But what if the dysphagia is not due to muscles weakness? The purpose of this clinical manuscript is to reflect on where we have been, where we are now and perhaps where we need to go in terms of our understanding of swallowing motor control and rehabilitation of motor control impairments. This compilation is presented to clinicians in the hope that suggesting approaches "outside the box" will inspire clinicians to focus their attention "inside the box" to ultimately improve rehabilitation and long-term outcomes for patients with dysphagia.


Assuntos
Transtornos de Deglutição , Humanos , Transtornos de Deglutição/reabilitação , Deglutição , Músculos
3.
Int J Pharm ; 619: 121668, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35304245

RESUMO

Oral solid dosage forms, specifically immediate release tablets, are prevalent in the pharmaceutical industry. Disintegration testing is often the first step of commercialization and large-scale production of these dosage forms. Current disintegration testing in the pharmaceutical industry, according to United States Pharmacopeia (USP) chapter 〈701〉, only gives information about the duration of the tablet disintegration process. This information is subjective, variable, and prone to human error due to manual or physical data collection methods via the human eye or contact disks. To lessen the data integrity risk associated with this process, efforts have been made to automate the analysis of the disintegration process using digital lens and other imaging technologies. This would provide a non-invasive method to quantitatively determine disintegration time through computer algorithms. The main challenges associated with developing such a system involve visualization of tablet pieces through cloudy and turbid liquid. The Computer Vision for Disintegration (CVD) system has been developed to be used along with traditional pharmaceutical disintegration testing devices to monitor tablet pieces and distinguish them from the surrounding liquid. The software written for CVD utilizes data captured by cameras or other lenses then uses mobile SSD and CNN, with an OpenCV and FRCNN machine learning model, to analyze and interpret the data. This technology is capable of consistently identifying tablets with ≥ 99.6% accuracy. Not only is the data produced by CVD more reliable, but it opens the possibility of a deeper understanding of disintegration rates and mechanisms in addition to duration.


Assuntos
Doenças Cardiovasculares , Química Farmacêutica , Química Farmacêutica/métodos , Computadores , Humanos , Solubilidade , Comprimidos , Tecnologia , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...