Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 10(4): 410-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22260326

RESUMO

Human papillomavirus 8 (HPV-8), one of the high-risk cutaneous papillomaviruses (cHPVs), is associated with epidermodysplasia verruciformis and nonmelanoma skin cancer in immuno-compromised individuals. Currently, no vaccines against cHPVs have been reported; however, recent studies on cross-neutralizing properties of their capsid proteins (CP) have fostered an interest in vaccine production against these viruses. We examined the potential of producing HPV-8 major CP L1 in Nicotiana benthamiana by agroinfiltration of different transient expression vectors: (i) the binary vector pBIN19 with or without silencing suppressor constructs, (ii) the nonreplicating Cowpea mosaic virus-derived expression vector pEAQ-HT and (iii) a replicating Tobacco mosaic virus (TMV)-based vector alone or with signal peptides. Although HPV-8 L1 was successfully expressed using pEAQ-HT and TMV, a 15-fold increase was obtained with pEAQ-HT. In contrast, no L1 protein could be immune detected using pBIN19 irrespective of whether silencing suppressors were coexpressed, although such constructs were required for identifying L1-specific transcripts. A fourfold yield increase in L1 expression was obtained when 22 C-terminal amino acids were deleted (L1ΔC22), possibly eliminating a nuclear localization signal. Electron microscopy showed that plant-made HPV-8 L1 proteins assembled in appropriate virus-like particles (VLPs) of T = 1 or T = 7 symmetry. Ultrathin sections of L1ΔC22-expressing cells revealed their accumulation in the cytoplasm in the form of VLPs or paracrystalline arrays. These results show for the first time the production and localization of HPV-8 L1 protein in planta and its assembly into VLPs representing promising candidate for potential vaccine production.


Assuntos
Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/isolamento & purificação , Expressão Gênica , Técnicas Genéticas , Nicotiana/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Northern Blotting , Proteínas do Capsídeo/ultraestrutura , DNA Bacteriano/genética , Vetores Genéticos/genética , Humanos , Immunoblotting , Espaço Intracelular/metabolismo , Espaço Intracelular/virologia , Proteínas Mutantes/metabolismo , Proteínas Oncogênicas Virais/ultraestrutura , Exsudatos de Plantas/metabolismo , Proteínas Recombinantes/ultraestrutura , Frações Subcelulares/virologia , Vírion/metabolismo , Vírion/ultraestrutura
2.
Phytopathology ; 92(3): 288-93, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18944001

RESUMO

ABSTRACT Big-vein disease occurs on lettuce worldwide in temperate conditions; the causal agent has been presumed to be Lettuce big-vein virus (LBVV), genus Varicosavirus, vectored by the soilborne fungus Olpidium brassicae. Recently, the role of LBVV in the etiology of big-vein disease has been questioned because a second soilborne virus, Mirafiori lettuce virus (MiLV), genus Ophiovirus, has been found frequently in big-vein-affected lettuce. LBVV and MiLV, detectable and distinguishable by enzyme-linked immunosorbent assay using specific antisera, were tested for their ability to be transmitted from lettuce to lettuce by mechanical inoculation of sap extracts, or by zoospores of O. brassicae, and to cause big-vein disease. Both viruses were mechanically transmissible from lettuce to herbaceous hosts and to lettuce, but very erratically. LBVV was transmitted by O. brassicae but lettuce infected with only this virus never showed symptoms. MiLV was transmitted in the same manner, and lettuce infected with this virus alone consistently developed big-vein symptoms regardless of the presence or absence of LBVV. With repeated mechanical transmission, isolates of both viruses appeared to lose the ability to be vectored, and MiLV appeared to lose the ability to cause big-vein symptoms. The recovery of MiLV (Mendocino isolate, from Cali-fornia) from stored O. brassicae resting spores puts the earliest directly demonstrable existence of MiLV at 1990.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...