Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(47): 17655-17659, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755880

RESUMO

The construction of fluorocarbene ligands within the coordination sphere of transition metal complexes using sequential nucleophilic and electrophilic addition to a vinylidene complex is described. Reaction of [Ru(η5-C5H5)(dppe)([double bond, length as m-dash]C[double bond, length as m-dash]CPhF)][N(SO2Ph)2] with [NMe4]F results in nucleophilic attack of fluoride at the metal-bound carbon of the vinylidene ligand to give alkenyl complex [Ru(η5-C5H5)(dppe)(-CF[double bond, length as m-dash]CFPh)]. Subsequent eletrophilic fluorination with N-fluorobenzenesulfonimide (NFSI) results in the formation of the fluorinated carbene complex [Ru(η5-C5H5)(dppe)([double bond, length as m-dash]CF-CHFPh)][N(SO2Ph)2]. The fluorocarbene complexes undergo rearrangement to liberate free fluorinated alkenes, a process governed by the choice of solvent and anion, representing a new metal-mediated route to fluorinated alkenes from alkynes.

2.
Dalton Trans ; 45(4): 1717-26, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26701305

RESUMO

Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes.

3.
J Am Chem Soc ; 137(33): 10753-9, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26270894

RESUMO

Organofluorine chemistry plays a key role in materials science, pharmaceuticals, agrochemicals, and medical imaging. However, the formation of new carbon-fluorine bonds with controlled regiochemistry and functional group tolerance is synthetically challenging. The use of metal complexes to promote fluorination reactions is of great current interest, but even state-of-the-art approaches are limited in their substrate scope, often require activated substrates, or do not allow access to desirable functionality, such as alkenyl C(sp(2))-F or chiral C(sp(3))-F centers. Here, we report the formation of new alkenyl and alkyl C-F bonds in the coordination sphere of ruthenium via an unprecedented outer-sphere electrophilic fluorination mechanism. The organometallic species involved are derived from nonactivated substrates (pyridine and terminal alkynes), and C-F bond formation occurs with full regio- and diastereoselectivity. The fluorinated ligands that are formed are retained at the metal, which allows subsequent metal-mediated reactivity.


Assuntos
Elétrons , Halogenação , Compostos Organometálicos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
4.
Chem Commun (Camb) ; 51(47): 9702-5, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978687

RESUMO

The coordination modes of the [Au(PPh3)](+) cation to metal alkynyl complexes have been investigated. On addition to ruthenium, a vinylidene complex, [Ru(η(5)-C5H5)(PPh3)2([double bond, length as m-dash]C[double bond, length as m-dash]CPh{AuPPh3})](+), is obtained while addition to a gold(iii) compound gives di- and trinuclear gold complexes depending on the conditions employed. In the trinuclear species, a gold(i) cation is sandwiched between two gold(iii) alkynyl complexes, suggesting that coordination of multiple C-C triple bonds to gold is facile.

5.
Dalton Trans ; 43(29): 11277-85, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24828970

RESUMO

A combined computational and experimental study is presented that investigates the mechanism of the anti-Markovnikov hydration of phenylacetylene by [Ru(η(5)-C5H5)(6-DPPAP)(3-DPICon)](+) (where 6-DPPAP = 6-(diphenylphosphino)-N-pivaloyl-2-aminopyridine) and 3-DPICon = 3-diphenylphosphinoisoquinolone). The proposed mechanism, modelled using density functional calculations, involves an initial alkyne-vinylidene tautomerism, which occurs via a ligand-assisted proton shuttle (LAPS) mechanism. Intramolecular ligand assistance from the 6-DPPAP and 3-DPICon ligands, particularly the basic nitrogen of 6-DPPAP, is also involved in subsequent stages of the mechanism and three LAPS processes in total are observed. The self-assembled ligand backbone helps to create a water-binding pocket close to the metal centre, which facilitates nucleophilic attack of water at the vinylidene α-carbon and mediates protonation and deprotonation of subsequent acyl and vinyl intermediates. Experimental evidence is also presented for a novel non-productive catalyst deactivation pathway, which appears to arise from an initial lactam-lactim tautomerism of the 3-DPICon ligand followed by coupling with a vinylidene.

6.
Dalton Trans ; 43(11): 4565-72, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24481140

RESUMO

The ruthenium naphthalene complex [Ru(η(5)-C5H5)(η(6)-C10H8)](+) is a catalyst precursor for the direct C-H alkenylation of pyridine and related nitrogen heterocycles by terminal alkynes. Stoichiometric studies have demonstrated that the naphthalene ligand may be displaced by either pyridine, 4-methylpyridine or dimethylaminopyridine (DMAP) to give species [Ru(η(5)-C5H5)L3](+) (L = nitrogen-based ligand). Reaction of in situ-generated [Ru(η(5)-C5H5)(py)3](+) (py = pyridine) with PPh3 results in the formation of [Ru(η(5)-C5H5)(PPh3)(py)2](+), the active catalyst for direct alkenylation, some [Ru(η(5)-C5H5)(PPh3)2(py)](+) is also formed in this reaction. A one-pot procedure is reported which has allowed for the nature of the nitrogen heterocycle and phosphine ligand to be evaluated. The sterically demanding phosphine PCy3 inhibits catalysis, and only trace amounts of product are formed when precursors containing a pentamethylcyclopentadienyl group were used. The greatest conversion was observed with PMe3 when used as co-ligand with [Ru(η(5)-C5H5)(η(6)-C10H8)](+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...