Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793876

RESUMO

This study examined the efficacy of an optimized DeepLabCut (DLC) model in motion capture, with a particular focus on the sit-to-stand (STS) movement, which is crucial for assessing the functional capacity in elderly and postoperative patients. This research uniquely compared the performance of this optimized DLC model, which was trained using 'filtered' estimates from the widely used OpenPose (OP) model, thereby emphasizing computational effectiveness, motion-tracking precision, and enhanced stability in data capture. Utilizing a combination of smartphone-captured videos and specifically curated datasets, our methodological approach included data preparation, keypoint annotation, and extensive model training, with an emphasis on the flow of the optimized model. The findings demonstrate the superiority of the optimized DLC model in various aspects. It exhibited not only higher computational efficiency, with reduced processing times, but also greater precision and consistency in motion tracking thanks to the stability brought about by the meticulous selection of the OP data. This precision is vital for developing accurate biomechanical models for clinical interventions. Moreover, this study revealed that the optimized DLC maintained higher average confidence levels across datasets, indicating more reliable and accurate detection capabilities compared with standalone OP. The clinical relevance of these findings is profound. The optimized DLC model's efficiency and enhanced point estimation stability make it an invaluable tool in rehabilitation monitoring and patient assessments, potentially streamlining clinical workflows. This study suggests future research directions, including integrating the optimized DLC model with virtual reality environments for enhanced patient engagement and leveraging its improved data quality for predictive analytics in healthcare. Overall, the optimized DLC model emerged as a transformative tool for biomechanical analysis and physical rehabilitation, promising to enhance the quality of patient care and healthcare delivery efficiency.


Assuntos
Movimento , Redes Neurais de Computação , Humanos , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Masculino , Feminino , Smartphone , Adulto , Postura Sentada , Posição Ortostática , Captura de Movimento
2.
Folia Med (Plovdiv) ; 65(6): 879-884, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38351775

RESUMO

INTRODUCTION: Hip fractures are one of the major disability causes associated with a high morbidity and mortality rate. Early surgery and stable fixation could be associated with better pain control, possibly lower mortality rates, and early recovery of autonomy.


Assuntos
Artroplastia de Quadril , Fraturas do Quadril , Medicina , Humanos , Estudos Retrospectivos , Fraturas do Quadril/cirurgia , Fixação de Fratura , Artroplastia de Quadril/reabilitação , Resultado do Tratamento
3.
Eur J Dent ; 15(1): 47-53, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32869222

RESUMO

OBJECTIVE: The purpose of this investigation is to highlight the technical components of a new kind of screw-retained dental implant prosthesis. The hypothesis is whether the OT Bridge (Rhein 83 S.R.L.; Bologna, Italy) system could be applied without secondary screw in the "all-on-four" retention system, thanks to the presence of an internal seeger. MATERIALS AND METHODS: By using engineering device such as finite element method (FEM) and von Mises investigation, it has been studied how the fixed prosthodontics for full-arch retention can be influenced by the presence of the screw for stabilizing it. RESULTS: In a dental implant, one model with four different configurations of the full-arch prosthesis retainer and the seeger has been investigated and then examined in contrast with or without the passant screw for locking the system. The experiments of this virtual study highlighted different features and mechanical behaviors of prosthodontic attachments. CONCLUSION: The first two configurations, respectively those in which there are four and three connection screws, are safe and predictable. Therefore, the presence of the seeger significantly improves the stability and the retention of the whole prosthesis.

4.
Materials (Basel) ; 12(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781478

RESUMO

The objective of this investigation was to analyze the mechanical features of two different prosthetic retention devices. By applying engineering tools like the finite element method (FEM) and Von Mises analyses, we investigated how dental implant devices hold out against masticatory strength during chewing cycles. Two common dental implant overdenture retention systems were analyzed and then compared with a universal-common dental abutment. The Equator® attachment system and the Locator® arrangement were processed using the FEM Ansys® Workbench. The elastic features of the materials used in the study were taken from recent literature. Results revealed different responses for both the devices, and both systems guaranteed a perfect fit over the axial load. However, the different design and shape involves the customized use of each device for a typical clinical condition of applying overdenture systems over dental implants. The data from this virtual model showed different features and mechanical behaviors of the overdenture prosthodontics attachments. A three-dimensional system involved the fixture, abutment, and passant screws of three different dental implants that were created and analyzed. Clinicians should find the best prosthetic balance to better distribute the stress over the component, and to guarantee the patients clinical long-term results.

5.
Materials (Basel) ; 11(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142897

RESUMO

The objective of the present investigation was to evaluate how dental implant positioning can influence the masticatory stress distribution over screwed mandibular prosthodontics restoration and over the surrounding bone tissue. Moreover, the dental implant components and overdenture bar strengths under masticatory cycles have been investigated in order to evaluate possible screw and prosthesis breakage. A "virtual jaw" model and 3D dental implant were reproduced to realise finite element analysis in order to underline the parameters and the mechanical characteristics of the bone and of the dental implants connected to the overdenture bar. The distribution of a nonspecific chewing phase, analysing the overall load on the fixtures of the lower jaw, was performed. The study investigating frontal and horizontal planes and vertical directions of occlusal forces showed how position and perspective of fixtures strongly influenced the stress distribution and the consequent jawbone tissue remodelling. Prostheses elements such as cantilever, passing screws, and dental implants are strictly related to the correct selection of dental implant position. This study suggested a virtual method to guide the surgeon in the choice of implant number, position, diameter, and length, and cantilever length and shape, and to evaluate the prospective stress distribution of chewing strengths for a correct prosthesis rehabilitation.

6.
Open Dent J ; 12: 219-229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682092

RESUMO

PURPOSE: The objective of this investigation is to study prosthodontics and internal components resistance to the masticatory stress and considering different force directions by using Finite Element Method analysis (FEM). The structural materials of the components are usually Titanium alloy grade 4 or 5 and thus, guarantee the integration of the fixture in the bone due to the osteointegration phenomena. Even if the long-term dental implant survival rate is easy to be obtained and confirmed by numerous researches, the related clinical success, due to the alteration of the mechanical and prosthodontics components is still controversial. METHODS: By applying engineering systems of investigations like FEM and Von Mises analyses, it has been investigated how dental implant material was held against the masticatory strength during the dynamic masticatory cycles. A three-dimensional system involved fixture, abutment and the connection screws, which were created and analyzed. The elastic features of the materials used in the study were taken from recent literature data. RESULTS: Data revealed a different response for both types of devices, although implant neck and dental abutment showed better results for all conditions of loading while the abutment screw represented aweak point of the system. CONCLUSION: The data of this virtual model showed all the features of different prosthetic retention systems under the masticatory load. Clinicians should find better prosthetic balance in order to better distribute the stress over the component and to guarantee patients' clinical long-term results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...