Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Entomol ; 69: 455-479, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270987

RESUMO

Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.


Assuntos
Arecaceae , Besouros , Inseticidas , Gorgulhos , Animais , Feromônios , Biologia
2.
Insects ; 14(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37504647

RESUMO

North American bean thrips, Caliothrips fasciatus, native to California U.S., has been detected inside the navels of navel oranges exported from California for more than 120 years. Despite this long history of accidental movement into new areas, this thrips has failed to establish populations outside of its native range. The cold accumulation hypothesis postulates that increasing levels of cold stress experienced by thrips overwintering inside navels is compounded when harvested fruit is shipped under cold storage conditions. Consequently, the fitness of surviving thrips is compromised, which greatly diminishes invasion potential. At the time this study was conducted, the effects of temperature on C. fasciatus fitness were unknown. To address this shortcoming, the effects of nine fluctuating temperatures that averaged 8, 10, 15, 20, 25, 30, 32, 35, and 37 °C over a 24 h period on the developmental and reproductive biology of C. fasciatus were evaluated. One linear and five nonlinear regression functions were fit to egg-to-adult development rate data for parent and offspring thrips to characterize thermal performance curves. Estimates of minimum, optimal, and maximum temperature thresholds for development were in the ranges of -4.37-6.52 °C (i.e., Tmin), 31.19-32.52 °C (i.e., Topt), and 35.07-37.98 °C (i.e., Tmax), respectively. Degree day accumulation to complete development, estimated from linear regression, ranged 370.37-384.61. Average development times for eggs, first and second instar larvae, propupae, pupae, and adult longevity, and mean lifetime fecundity of females were significantly affected by temperature. These biological responses to temperature may provide insight into how this abiotic variable affects the invasion potential of C. fasciatus.

3.
J Insect Sci ; 22(2)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303103

RESUMO

Heilipus lauri Boheman (Coleoptera: Curculionidae) is a specialist pest of avocado fruit and is considered an incursion risk for U.S. avocado producers. At the time work reported here was undertaken the flight capabilities of H. lauri were unknown. Consequently, proactive studies were undertaken to quantify aspects of this pest's flight capabilities to inform potential future control efforts. Flight mill studies were conducted in a quarantine laboratory to measure the dispersal capacity of H. lauri with respect to gender, mating status, and size on the single and repeat flight capabilities of weevils. Gender, mating status, and size did not significantly affect measured flight parameters. Average total distances flown and flight velocity, and mean maximum flight bout distances and durations significantly declined as weevil age increased and when weevils engaged in repeat flights. Survivorship rates were significantly reduced as the number of successive flights undertaken increased. The distribution of total average flight distances flown and total cumulative flight distances flown was platykurtic. The implications of these findings are discussed in terms of developing incursion management plans.


Assuntos
Besouros , Persea , Gorgulhos , Animais , Voo Animal , Reprodução
4.
Insects ; 12(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535626

RESUMO

The life time flight capabilities of an invasive palm pest, Rhynchophorus palmarum, were assessed using flight mill assays under controlled conditions in the laboratory. A total of 101 weevils were used for experiments and subjected to repeat flight assays. A total of 17 flight trials were run, of which the first 14 provided useful data prior to weevil death. Male and female weevils exhibited a strong capacity for repeat long distance flights. Flight metrics of interest were not affected by weevil sex or mating status. Cumulative lifetime flight distances for male and female R. palmarum averaged ~268 km and ~220 km, respectively. A maximum lifetime cumulative flight distance of ~758 km and ~806 km was recorded for one male of unknown mating status and one unmated female weevil, respectively. Dispersal data for individual flights (i.e., trials 1 through 9, 10-14 combined) and all flight trial data (i.e., flights 1-14 combined) exhibited platykurtic distributions. The results presented here may have important implications for modeling the spread of this invasive pest and for the development of monitoring and management plans.

5.
J Econ Entomol ; 113(6): 3028-3031, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32996571

RESUMO

The efficacies of two trap types, bucket and Picusan traps, for capturing and retaining Rhynchophorus palmarum (L.), an invasive palm pest responsible for killing thousands of ornamental Canary Islands date palms (Phoenix canariensis Chabaud [Arecales: Arecaceae]) in San Diego County, CA, were compared. Digital video data were analyzed to determine how R. palmarum behavior toward each trap type affected capture and retention rates. Videography was conducted 24 h/d, 7 d/wk, for more than 7 mo resulting in 20,211 h of digital data for analysis. Weevil attraction to traps was observed only during daylight hours and no patterns in diel activity were found. Neither trap type tested captured 100% of weevils attracted to traps. Bucket traps suspended 1.5 m above the ground attracted 30% more weevils than ground deployed Picusan traps. Of those weevils attracted to bucket traps, 89% entered, 82% escaped, and 18% that entered traps were retained. Weevils that were not retained spent an average of 19 min 20 s entering and exiting entry holes and walking and flying around the bucket trap. By contrast, Picusan traps captured 89% of weevils that entered the trap. The time between weevils arriving (via walking or flight) on the sides of the Picusan trap and retention in the trap ranged between 90 and 376 s. These visual observations suggest that Picusan traps are more efficient than bucket traps for R. palmarum capture.


Assuntos
Besouros , Phoeniceae , Gorgulhos , Animais , Controle de Insetos , Feromônios
6.
J Econ Entomol ; 113(5): 2407-2417, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32814963

RESUMO

Rhynchophorus palmarum (L.) is an invasive pest responsible for killing thousands of ornamental Canary Islands date palms (Phoenix canariensis Chabaud) in San Diego County, CA. Two field experiments were conducted to compare the attractiveness of six different baits and two trap types. The tested baits were dates + water; dates + water + Saccharomyces cerevisiae; dates + water + S. bayanus; dates + water + S. pastorianus; 15% sugarcane molasses water solution mixed with 3% paraffinic oil, and a no bait control treatment. The two traps tested were white bucket traps (hanging 1.5 m above the ground and set on the ground) and black cone shaped Picusan traps (set on ground only). All traps were loaded with commercially available R. palmarum aggregation pheromone and the synergist ethyl acetate. Differences in weevil capture rates were observed across bait and trap types. Weevil captures were almost five times greater in Picusan traps compared to bucket traps that were hanging or placed on the ground. Adding dates and water alone or combined with S. cerevisiae to traps increased weevil captures compared to other baits and controls. Trap and bait types affected bycatch of nontarget arthropod species. In general, spiders, earwigs, and carabid beetles were most commonly recovered from Picusan traps, regardless of bait type. Scarab beetles, moths, and flies were found more frequently in bucket traps baited with molasses or dates mixed with S. bayanus. No effects of bait and trap type were associated with bycatch species richness.


Assuntos
Besouros , Gorgulhos , Animais , California , Controle de Insetos , Feromônios/farmacologia , Saccharomyces cerevisiae
7.
J Econ Entomol ; 113(4): 1786-1795, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32510131

RESUMO

The palm weevil, Rhynchophorus palmarum (L.), was first recorded in San Diego County, CA in 2011 and breeding populations were recovered from infested Canary Islands date palms, Phoenix canariensis, in San Ysidro, San Diego County, in 2015. This palm pest presents a significant threat to California's edible date industry as Phoenix dactylifera is a recorded host for this weevil. The flight capabilities of R. palmarum are unknown which limits understanding of rates of natural dispersal. In response to this knowledge deficit, 24-h flight mill trials were conducted with field-collected male and female weevils. A total of 87 weevils (49 females and 38 males) were used in experiments, ~6% failed to fly >1 km in 24 h and were excluded from analyses. Of those 82 weevils flying >1 km in 24 h, the average distance flown by males and females was ~41 and ~53 km, respectively. Approximately 10% of females flew >100 km in 24 h, with two (~4%) females flying >140 km. The maximum recorded distance flown by a male weevil was 95 km. Flight activity was predominantly diurnal and flying weevils exhibited an average weight loss of ~18% while non-flying control weevils lost ~13% body weight in 24 h. The combined flight distances for male and female weevils exhibited a heavy-tailed platykurtic distribution. Flight mill data for R. palmarum are compared to similarly collected flight mill data for two other species of invasive palm weevil, Rhynchophorus ferrugineus (Olivier) and Rhynchophorus vulneratus (Panzer).


Assuntos
Besouros , Phoeniceae , Gorgulhos , Animais , Feminino , Masculino
8.
Environ Sci Pollut Res Int ; 27(24): 29867-29899, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32500500

RESUMO

We present a synthetic review and expert consultation that assesses the actual risks posed by arthropod pests in four major crops, identifies targets for integrated pest management (IPM) in terms of cultivated land needing pest control and gauges the implementation "readiness" of non-chemical alternatives. Our assessment focuses on the world's primary target pests for neonicotinoid-based management: western corn rootworm (WCR, Diabrotica virgifera virgifera) in maize; wireworms (Agriotes spp.) in maize and winter wheat; bird cherry-oat aphid (Rhopalosiphum padi) in winter wheat; brown planthopper (BPH, Nilaparvata lugens) in rice; cotton aphid (Aphis gossypii) and silver-leaf whitefly (SLW, Bemisia tabaci) in cotton. First, we queried scientific literature databases and consulted experts from different countries in Europe, North America, and Asia about available IPM tools for each crop-pest system. Next, using an online survey, we quantitatively assessed the economic relevance of target pests by compiling country-level records of crop damage, yield impacts, extent of insecticide usage, and "readiness" status of various pest management alternatives (i.e., research, plot-scale validation, grower-uptake). Biological control received considerable scientific attention, while agronomic strategies (e.g., crop rotation), insurance schemes, decision support systems (DSS), and innovative pesticide application modes were listed as key alternatives. Our study identifies opportunities to advance applied research, IPM technology validation, and grower education to halt or drastically reduce our over-reliance on systemic insecticides globally.


Assuntos
Inseticidas , Praguicidas , Animais , Ásia , Europa (Continente) , Neonicotinoides , América do Norte
9.
J Econ Entomol ; 113(2): 633-645, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31814024

RESUMO

The effects of six average daily temperatures, 15, 20, 25, 30, 32, and 35°C, that were either constant or fluctuating over 24 h on development times of California-sourced Diaphorina citri Kuwayama nymphs were examined. Thermal performance curves for immature stages of D. citri were characterized using one linear and six nonlinear models (i.e., Ratkowsky, Lobry-Rosso-Flandrois, Lactin-2, Brière-2, Beta, and Performance-2). Daily thermal fluctuations had significant effects on development times of D. citri nymphs, which differed across experimental temperatures. Diaphorina citri nymphs reared at constant temperatures completed development faster than those reared under fluctuating profiles with equivalent temperature means. Linear model estimates of degree-days required for completion of cumulative development of D. citri were 25% lower for constant temperatures when compared with fluctuating temperature regimens. Nonlinear model estimations of optimum developmental temperature and upper theoretical temperature bounds for development were similar for individuals reared under constant and fluctuating temperatures. Nevertheless, the estimated values of lower theoretical temperature limits above which development occurred were lower under fluctuating than constant temperatures. A meta-analysis of published D. citri temperature-dependent development literature, synthesizing datasets of five globally distributed populations (Brazil, California, China, Florida, and Japan) reared under different constant temperatures on six different host plants (i.e., Citrus limonia, C. sinensis cv Natal, C. sinensis cv. Pêra, C. reticulata, Fortunella margarita, and Murraya paniculata), together with the results of this study (C. volkameriana), revealed convergence in estimates of developmental parameters. These results have implications for predicting D. citri invasion and establishment risk and subsequent population performance across various climactic gradients and geographic regions.


Assuntos
Citrus , Hemípteros , Animais , Brasil , China , Florida , Japão , Temperatura
10.
J Econ Entomol ; 112(4): 1560-1574, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053849

RESUMO

This study examined the effects of seven constant and fluctuating temperature profiles with corresponding averages of 12 to 38°C on the life history of the Punjab, Pakistan-sourced Tamarixia radiata (Waterston) released in California for biological control of Diaphorina citri Kuwayama. One linear and seven nonlinear regression functions were fit to egg-to-adult development rate data to characterize thermal performance curves. Temperature fluctuations significantly affected both development and longevity of T. radiata. Estimates of degree-days predicted by the linear model were 30% higher for the fluctuating regime than the constant regime. Nonlinear model estimations of theoretical minimum and maximum developmental thresholds were lower for the fluctuating regime when compared to the constant regime. These predictions align with experimental observations. Parasitoids reared under fluctuating profiles at low average temperatures developed faster (15°C) and survived longer (15-20°C) when compared to those reared under constant regimes with corresponding means. In contrast, high average fluctuating temperatures produced parasitoids with an extended developmental period (35°C) and reduced longevity (30-35°C). A meta-analysis of published T. radiata development datasets, together with the results of this study, indicated convergence in degree-days and theoretical minimum developmental thresholds among geographically distinct parasitoid populations. These findings demonstrate the significant effects of temperature on T. radiata life history and have important implications for optimization of mass-rearing and release efforts, improvement of predictions from climate modeling, and comparison of T. radiata population performance across climatic gradients and geographic regions.


Assuntos
Citrus , Hemípteros , Vespas , Animais , California , Paquistão , Controle Biológico de Vetores , Temperatura
11.
J Econ Entomol ; 112(3): 1062-1072, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30689916

RESUMO

The effects of fluctuating and constant temperatures on the development and longevity of Diaphorencyrtus aligarhensis (Shafee, Alam, and Argarwal) (Hymenoptera: Encyrtidae), a parasitoid sourced from Pakistan and released in California for the classical biological control of Diaphorina citri Kuwayama (Hemiptera: Liviidae), were examined. The influence of six fluctuating temperatures that averaged 15, 20, 25, 30, 32, and 35°C, over 24 h on the development times and longevity of male and female D. aligarhensis were quantified and compared to six constant temperatures set at the same average temperatures. The development rates of immature stages of D. aligarhensis as a function of temperature were modeled using one linear and four nonlinear models. Fluctuating temperatures had significant effects on parasitoid development times and longevity which differed across experimental temperatures. Degree-days required for completion of cumulative development of D. aligarhensis were significantly different being 21% lower under fluctuating temperature regimens when compared with constant temperatures. The lower temperature threshold estimates above which development occurred were estimated to be lower under constant than fluctuating temperatures. The estimated values of upper and optimum temperature limits were similar for individuals reared under constant and fluctuating temperatures. Diaphorencyrtus aligarhensis lived longer at constant intermediate temperatures and for shorter times at constant lower temperature extremes when compared with their fluctuating temperature counterparts. Daily thermal fluctuations significantly influenced life history parameters of D. aligarhensis and should be considered when assessing likelihoods of establishment and impacts of this parasitoid on D. citri across diverse citrus-growing climates.


Assuntos
Hemípteros , Vespas , Animais , California , Feminino , Masculino , Paquistão , Temperatura
12.
Environ Entomol ; 47(2): 233-243, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29373671

RESUMO

Modeling can be used to characterize the effects of environmental drivers and biotic factors on the phenology of arthropod pests. From a biological control perspective, population dynamics models may provide insights as to when the most vulnerable pest life stages are available for natural enemies to attack. Analyses presented here used temperature and habitat dependent, instar-specific, discrete models to investigate the population dynamics of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). This pest is the target of a classical biological control program with the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). The population trends of D. citri eggs, nymphs, and adults, citrus flush growth patterns, and T. radiata activity were monitored monthly on orange and lemon trees at 10 urban sites in southern California for a 2-yr period. Cumulative D. citri egg, nymph, and adult days recorded at each site, were regressed against accumulated degree-days (DDs) to model the population dynamics of each development stage in relation to temperature. Using a biofix point of 1 January, the model predicted that 10% and 90% of eggs were laid by 198 and 2,255 DD, respectively. Populations of small and large D. citri nymphs increased slowly with 90% of the population recorded by 2,389 and 2,436 DD, respectively. D. citri adults were present year round with 10 and 90% of the population recorded by 95 and 2,687 DD, respectively. The potential implications of using DD models for optimizing inoculative releases of natural enemies, such as T. radiata into citrus habitat infested with D. citri, are discussed.


Assuntos
Ecossistema , Hemípteros , Modelos Biológicos , Animais , California , Citrus , Feminino , Controle Biológico de Vetores , Dinâmica Populacional , Estações do Ano
13.
Sci Rep ; 6: 39629, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004758

RESUMO

Across many ecosystems, increases in species biodiversity generally results in greater resource acquisition by consumers. Few studies examining the impacts of consumer diversity on resource capture have focused on terrestrial herbivores, however, especially taxa that feed belowground. Here we conducted field mesocosm experiments to examine the effects of variation in species richness and composition within a community of wireworm herbivores on wheat plant productivity. Our experiments involved wireworm communities consisting of between one and three species, with all possible combinations of species represented. We found that the presence of wireworms reduced plant biomass and seed viability, but wireworm species richness did not impact these plant metrics. Species identity effects were strong, as two species, Limonius californicus and Selatosomus pruininus, had significantly stronger impacts on plants compared to L. infuscatus. Communities with either of the two most impactful species consistently had the greatest impact on wheat plants. The effects of wireworms were thus strongly dependent on the particular species present rather than the overall diversity of the wireworm community. More broadly, our study supports the general finding that the identity of particular consumer species within communities often has greater impacts on ecosystem functioning than species richness.


Assuntos
Biodiversidade , Besouros/fisiologia , Herbivoria , Magnoliopsida , Triticum , Animais , Biomassa , Cadeia Alimentar , Larva , Estações do Ano , Sementes , Especificidade da Espécie
14.
Sci Adv ; 1(4): e1500214, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26601186

RESUMO

Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking.

15.
J Econ Entomol ; 108(4): 1786-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470320

RESUMO

Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices.


Assuntos
Agricultura/métodos , Besouros , Controle de Insetos , Inseticidas , Larva , Nitrocompostos , Oxazinas , Tiazóis , Triticum/crescimento & desenvolvimento , Animais , Besouros/crescimento & desenvolvimento , Neonicotinoides , Especificidade da Espécie , Tiametoxam , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...