Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(1): 394-409, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525967

RESUMO

Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.


Assuntos
Células-Tronco Embrionárias , Degeneração Retiniana , Humanos , Ratos , Animais , Camundongos , Edição de Genes , Engenharia Genética , Sistemas CRISPR-Cas/genética
2.
Commun Biol ; 5(1): 1051, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192519

RESUMO

Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk. We report the identification and functional characterization of rare coding variants (including loss-of-function variants) in ANGPTL7 associated with reduction in IOP and glaucoma protection. We validated the human genetics findings in mice by establishing that Angptl7 knockout mice have lower (~2 mmHg) basal IOP compared to wild-type, with a trend towards lower IOP also in heterozygotes. Conversely, increasing murine Angptl7 levels via injection into mouse eyes increases the IOP. We also show that acute Angptl7 silencing in adult mice lowers the IOP (~2-4 mmHg), reproducing the observations in knockout mice. Collectively, our data suggest that ANGPTL7 is important for IOP homeostasis and is amenable to therapeutic modulation to help maintain a healthy IOP that can prevent onset or slow the progression of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular , Adulto , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Cegueira , Glaucoma/tratamento farmacológico , Glaucoma/genética , Humanos , Camundongos , Camundongos Knockout
3.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939579

RESUMO

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Assuntos
Proteínas Reguladoras de Apoptose , Mutação em Linhagem Germinativa , Hepatopatias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/prevenção & controle , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Transaminases/genética , Sequenciamento do Exoma
4.
Science ; 374(6572): 1221-1227, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855475

RESUMO

Increased blood levels of low-density lipoprotein cholesterol (LDL-C) and fibrinogen are independent risk factors for cardiovascular disease. We identified associations between an Amish-enriched missense variant (p.Asn352Ser) in a functional domain of beta-1,4-galactosyltransferase 1 (B4GALT1) and 13.9 milligrams per deciliter lower LDL-C (P = 4.1 × 10­19) and 29 milligrams per deciliter lower plasma fibrinogen (P = 1.3 × 10­5). B4GALT1 gene­based analysis in 544,955 subjects showed an association with decreased coronary artery disease (odds ratio = 0.64, P = 0.006). The mutant protein had 50% lower galactosyltransferase activity compared with the wild-type protein. N-linked glycan profiling of human serum found serine 352 allele to be associated with decreased galactosylation and sialylation of apolipoprotein B100, fibrinogen, immunoglobulin G, and transferrin. B4galt1 353Ser knock-in mice showed decreases in LDL-C and fibrinogen. Our findings suggest that targeted modulation of protein galactosylation may represent a therapeutic approach to decreasing cardiovascular disease.


Assuntos
LDL-Colesterol/sangue , Fibrinogênio/análise , Galactosiltransferases/genética , Mutação de Sentido Incorreto , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Feminino , Galactose/metabolismo , Galactosiltransferases/metabolismo , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Glicoproteínas/sangue , Glicosilação , Humanos , Fígado/enzimologia , Masculino , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/sangue , Sequenciamento Completo do Genoma
5.
Mol Ther ; 29(12): 3512-3524, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400331

RESUMO

Lysosomal diseases are a class of genetic disorders predominantly caused by loss of lysosomal hydrolases, leading to lysosomal and cellular dysfunction. Enzyme replacement therapy (ERT), where recombinant enzyme is given intravenously, internalized by cells, and trafficked to the lysosome, has been applied to treat several lysosomal diseases. However, current ERT regimens do not correct disease phenotypes in all affected organs because the biodistribution of enzyme uptake does not match that of the affected cells that require the enzyme. We present here targeted ERT, an approach that utilizes antibody-enzyme fusion proteins to target the enzyme to specific cell types. The antibody moiety recognizes transmembrane proteins involved in lysosomal trafficking and that are also preferentially expressed in those cells most affected in disease. Using Pompe disease (PD) as an example, we show that targeted ERT is superior to ERT in treating the skeletal muscle phenotypes of PD mice both as a protein replacement therapeutic and as a gene therapy.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Doenças por Armazenamento dos Lisossomos , Animais , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/genética , Hidrolases/metabolismo , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Distribuição Tecidual , alfa-Glucosidases/genética
6.
J Bone Miner Res ; 36(4): 739-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249643

RESUMO

Osteogenesis imperfecta (OI) is a genetic connective tissue disorder characterized by compromised skeletal integrity, altered microarchitecture, and bone fragility. Current OI treatment strategies focus on bone antiresorptives and surgical intervention with limited effectiveness, and thus identifying alternative therapeutic options remains critical. Muscle is an important stimulus for bone formation. Myostatin, a TGF-ß superfamily myokine, acts through ActRIIB to negatively regulate muscle growth. Recent studies demonstrated the potential benefit of myostatin inhibition with the soluble ActRIIB fusion protein on skeletal properties, although various OI mouse models exhibited variable skeletal responses. The genetic and clinical heterogeneity associated with OI, the lack of specificity of the ActRIIB decoy molecule for myostatin alone, and adverse events in human clinical trials further the need to clarify myostatin's therapeutic potential and role in skeletal integrity. In this study, we determined musculoskeletal outcomes of genetic myostatin deficiency and postnatal pharmacological myostatin inhibition by a monoclonal anti-myostatin antibody (Regn647) in the G610C mouse, a model of mild-moderate type I/IV human OI. In the postnatal study, 5-week-old wild-type and +/G610C male and female littermates were treated with Regn647 or a control antibody for 11 weeks or for 7 weeks followed by a 4-week treatment holiday. Inhibition of myostatin, whether genetically or pharmacologically, increased muscle mass regardless of OI genotype, although to varying degrees. Genetic myostatin deficiency increased hindlimb muscle weights by 6.9% to 34.4%, whereas pharmacological inhibition increased them by 13.5% to 29.6%. Female +/mstn +/G610C (Dbl.Het) mice tended to have similar trabecular and cortical bone parameters as Wt showing reversal of +/G610C characteristics but with minimal effect of +/mstn occurring in male mice. Pharmacologic myostatin inhibition failed to improve skeletal bone properties of male or female +/G610C mice, although skeletal microarchitectural and biomechanical improvements were observed in male wild-type mice. Four-week treatment holiday did not alter skeletal outcomes. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese Imperfeita , Animais , Osso e Ossos , Colágeno Tipo I , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Miostatina/genética , Osteogênese , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética
7.
Nat Commun ; 8: 15153, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452368

RESUMO

Growth and differentiation factor 8 (GDF8) is a TGF-ß superfamily member, and negative regulator of skeletal muscle mass. GDF8 inhibition results in prominent muscle growth in mice, but less impressive hypertrophy in primates, including man. Broad TGF-ß inhibition suggests another family member negatively regulates muscle mass, and its blockade enhances muscle growth seen with GDF8-specific inhibition. Here we show that activin A is the long-sought second negative muscle regulator. Activin A specific inhibition, on top of GDF8 inhibition, leads to pronounced muscle hypertrophy and force production in mice and monkeys. Inhibition of these two ligands mimics the hypertrophy seen with broad TGF-ß blockers, while avoiding the adverse effects due to inhibition of multiple family members. Altogether, we identify activin A as a second negative regulator of muscle mass, and suggest that inhibition of both ligands provides a preferred therapeutic approach, which maximizes the benefit:risk ratio for muscle diseases in man.


Assuntos
Ativinas/metabolismo , Hipertrofia/patologia , Hipotonia Muscular/patologia , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/metabolismo , Receptores de Activinas Tipo II/metabolismo , Ativinas/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Índice de Massa Corporal , Dexametasona/farmacologia , Humanos , Contração Isométrica/fisiologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Músculo Esquelético/fisiologia , Miostatina/antagonistas & inibidores , Ratos
8.
Proteomics ; 16(14): 2019-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214824

RESUMO

Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences.


Assuntos
Hipertrofia/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Miostatina/genética , Proteoma/genética , Animais , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Marcação por Isótopo , Masculino , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Miostatina/antagonistas & inibidores , Miostatina/deficiência , Tamanho do Órgão , Proteoma/metabolismo
9.
Skelet Muscle ; 5: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457176

RESUMO

BACKGROUND: Loss of skeletal muscle mass and function in humans is associated with significant morbidity and mortality. The role of myostatin as a key negative regulator of skeletal muscle mass and function has supported the concept that inactivation of myostatin could be a useful approach for treating muscle wasting diseases. METHODS: We generated a myostatin monoclonal blocking antibody (REGN1033) and characterized its effects in vitro using surface plasmon resonance biacore and cell-based Smad2/3 signaling assays. REGN1033 was tested in mice for the ability to induce skeletal muscle hypertrophy and prevent atrophy induced by immobilization, hindlimb suspension, or dexamethasone. The effect of REGN1033 on exercise training was tested in aged mice. Messenger RNA sequencing, immunohistochemistry, and ex vivo force measurements were performed on skeletal muscle samples from REGN1033-treated mice. RESULTS: The human monoclonal antibody REGN1033 is a specific and potent myostatin antagonist. Chronic treatment of mice with REGN1033 increased muscle fiber size, muscle mass, and force production. REGN1033 prevented the loss of muscle mass induced by immobilization, glucocorticoid treatment, or hindlimb unweighting and increased the gain of muscle mass during recovery from pre-existing atrophy. In aged mice, REGN1033 increased muscle mass and strength and improved physical performance during treadmill exercise. CONCLUSIONS: We show that specific myostatin antagonism with the human antibody REGN1033 enhanced muscle mass and function in young and aged mice and had beneficial effects in models of skeletal muscle atrophy.

10.
PLoS One ; 10(4): e0125522, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909911

RESUMO

In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals.


Assuntos
RNA Longo não Codificante/genética , Transcrição Gênica/genética , Transcriptoma/genética , Alelos , Animais , Desenvolvimento Embrionário/genética , Feminino , Genes Reporter/genética , Masculino , Mamíferos/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
11.
J Am Assoc Lab Anim Sci ; 47(1): 18-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18210993

RESUMO

Pasteurella multocida is a bacterial pathogen that can cause significant disease and subsequent effects on research activities involving rabbits. Although several vaccines have been tested under laboratory conditions, field trials of vaccines for the control of P. multocida in rabbits are few. We used a potassium thiocyanate extract (PTE) produced from P. multocida serotype D:3,12,15 to vaccinate Pasteurella-free rabbits at their introduction into a colony having endemic infection with P. multocida serotype A:3. Groups of 15 rabbits were vaccinated either SC or IN with 1.0 mg PTE once weekly for 3 wk. In addition a control group was sham-vaccinated IN with saline. After the last vaccine dose had been administered, rabbits were housed with the general colony of a facility with endemic pasteurellosis. Serum samples obtained before and 5 and 24 wk after the first dose of vaccine were evaluated by ELISA for anti-PTE IgG. Rabbits were euthanized if found in poor clinical condition, and all remaining rabbits were euthanized 24 wk after initial vaccination. Clinical disease typical of P. multocida infection was observed in 10 of 15 saline-vaccinated rabbits, 4 of 15 IN PTE-vaccinated rabbits, and 1 of 15 SC PTE-vaccinated rabbits. Bacterial culture of the nasopharynx at the time of necropsy was positive for P. multocida in 10 of 15 control rabbits, 5 of 15 IN PTE-vaccinated rabbits, and 1 of 15 SC PTE-vaccinated rabbits. Anti-PTE serum IgG activity had developed in both IN- and SC-vaccinated rabbits by 5 wk, with significantly lower activity by 24 wk after initial vaccination. IgG activity was significantly greater in rabbits vaccinated SC compared with controls or those vaccinated IN. In summary, PTE can be used to stimulate protective immunity to a heterologous strain of P. multocida, with stronger immunity generated by SC than IN vaccination.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/imunologia , Coelhos/imunologia , Coelhos/microbiologia , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias/química , Feminino , Fígado/microbiologia , Pulmão/microbiologia , Nasofaringe/microbiologia , Infecções por Pasteurella/imunologia , Tiocianatos , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...