Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 56(9): 1490-1497, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29777607

RESUMO

BACKGROUND: Targeted quantification of protein biomarkers with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has great potential, but is still in its infancy. Therefore, we elucidated the influence of charge state distribution and matrix effects on accurate quantification, illustrated by the peptide hormone hepcidin. METHODS: An LC-MS/MS assay for hepcidin, developed based on existing literature, was improved by using 5 mM ammonium formate buffer as mobile phase A and as an elution solution for solid phase extraction (SPE) to optimize the charge state distribution. After extensive analytical validation, focusing on interference and matrix effects, the clinical consequence of this method adjustment was studied by performing receiving operating characteristic (ROC)-curve analysis in patients with iron deficiency anemia (IDA, n=44), anemia of chronic disease (ACD, n=42) and non-anemic patients (n=93). RESULTS: By using a buffered solution during sample preparation and chromatography, the most abundant charge state was shifted from 4+ to 3+ and the charge state distribution was strongly stabilized. The matrix effects which occurred in the 4+ state were therefore avoided, eliminating bias in the low concentration range of hepcidin. Consequently, sensitivity, specificity and positive predictive value (PPV) for detection of IDA patients with the optimized assay (96%, 97%, 91%, respectively) were much better than for the original assay (73%, 70%, 44%, respectively). CONCLUSIONS: Fundamental improvements in LC-MS/MS assays greatly impact the accuracy of protein quantification. This is urgently required for improved diagnostic accuracy and clinical value, as illustrated by the validation of our hepcidin assay.


Assuntos
Biomarcadores/análise , Cromatografia Líquida de Alta Pressão/métodos , Hepcidinas/análise , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia/patologia , Anemia Ferropriva/patologia , Área Sob a Curva , Proteína C-Reativa/análise , Doença Crônica , Feminino , Hepcidinas/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Extração em Fase Sólida , Adulto Jovem
2.
Protein Sci ; 27(2): 546-560, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29024217

RESUMO

Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.


Assuntos
Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Lipossomos/metabolismo , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Fosfatidilinositol 3-Quinases/genética , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Tacrolimo/genética
3.
Proc Natl Acad Sci U S A ; 113(9): E1152-61, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888287

RESUMO

Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.


Assuntos
Proteínas 14-3-3/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas 14-3-3/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Regulador de Condutância Transmembrana em Fibrose Cística/química , Modelos Moleculares , Dados de Sequência Molecular
4.
J Chem Phys ; 143(20): 201101, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26627942

RESUMO

We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.


Assuntos
Oligopeptídeos/química , Água/química , Ar , Animais , Elétrons , Substâncias Macromoleculares/química , Espectrofotometria Infravermelho , Vibração
5.
PLoS One ; 9(3): e91465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658146

RESUMO

Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fracionamento Celular , Proteína do X Frágil da Deficiência Intelectual/análise , Regulação da Expressão Gênica , Células HeLa , Humanos , Sinais de Localização Nuclear , Fosfoproteínas/análise , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/análise , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...