Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772018

RESUMO

Over the past few decades, additive manufacturing (AM) has become a reliable tool for prototyping and low-volume production. In recent years, the market share of such products has increased rapidly as these manufacturing concepts allow for greater part complexity compared to conventional manufacturing technologies. Furthermore, as recyclability and biocompatibility have become more important in material selection, biopolymers have also become widely used in AM. This article provides an overview of AM with advanced biopolymers in fields from medicine to food packaging. Various AM technologies are presented, focusing on the biopolymers used, selected part fabrication strategies, and influential parameters of the technologies presented. It should be emphasized that inkjet bioprinting, stereolithography, selective laser sintering, fused deposition modeling, extrusion-based bioprinting, and scaffold-free printing are the most commonly used AM technologies for the production of parts from advanced biopolymers. Achievable part complexity will be discussed with emphasis on manufacturable features, layer thickness, production accuracy, materials applied, and part strength in correlation with key AM technologies and their parameters crucial for producing representative examples, anatomical models, specialized medical instruments, medical implants, time-dependent prosthetic features, etc. Future trends of advanced biopolymers focused on establishing target-time-dependent part properties through 4D additive manufacturing are also discussed.

2.
Materials (Basel) ; 16(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36676621

RESUMO

The paper presents and analyzes the results of experimental tests performed on two non-alloy low carbon steels (1.1141 and 1.0122) in cases of their exposure to impact fracture energy and uniaxial high cyclic mechanical stress-controlled fatigue. The experimental results provide insight into the changes in the Charpy impact fracture energy of the V-notched test specimen that occur as a result of temperature changes. The experimental results also provide insight into the mechanical response of the tested materials to mechanical uniaxial high-cycle fatigue at room temperature in an air atmosphere and at different applied stress ratios. Material fatigue tests refer to symmetric (R = -1), asymmetric (R = -0.5) and pulsating tensile (R = 0) cycles. The test results are shown in the S-N diagrams and refer to the highest applied stresses in relation to the number of failures at a given stress ratio. Using the modified staircase method, the fatigue limit (endurance limit) was calculated for both tested materials at each prescribed stress ratio. For both tested steel alloys, and at prescribed stress ratios, the fatigue limit levels (σ_f) are shown as follows: for steel C15E+C (1.1141)→σf[250.8R=-1; 345.4R=-0.5; 527R=0](MPa); and for steel S235JRC+C (1.0122)→σf[202R=-1; 310R=-0.5; 462R=0](MPa). All uniaxial fatigue tests were performed on unnotched, smooth, highly-polished specimens. The microhardness of both materials was also tested.

3.
Materials (Basel) ; 15(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629732

RESUMO

Single point incremental forming (SPIF) is one of the most promising technologies for the manufacturing of sheet metal prototypes and parts in small quantities. Similar to other forming processes, the design of the SPIF process is a demanding task. Nowadays, the design process is usually performed using numerical simulations and virtual models. The modelling of the SPIF process faces several challenges, including extremely long computational times caused by long tool paths and the complexity of the problem. Path determination is also a demanding task. This paper presents a finite element (FE) analysis of an incrementally formed truncated pyramid compared to experimental validation. Focus was placed on a possible simplification of the FE process modelling and its impact on the reliability of the results obtained, especially on the geometric accuracy of the part and bottom pillowing effect. The FE modelling of SPIF process was performed with the software ABAQUS, while the experiment was performed on a conventional milling machine. Low-carbon steel DC04 was used. The results confirm that by implementing mass scaling and/or time scaling, the required calculation time can be significantly reduced without substantially affecting the pillowing accuracy. An innovative artificial neural network (ANN) approach was selected to find the optimal values of mesh size and mass scaling in term of minimal bottom pillowing error. However, care should be taken when increasing the element size, as it has a significant impact on the pillow effect at the bottom of the formed part. In the range of selected mass scaling and element size, the smallest geometrical error regarding the experimental part was obtained by mass scaling of 19.01 and tool velocity of 16.49 m/s at the mesh size of 1 × 1 mm. The obtained results enable significant reduction of the computational time and can be applied in the future for other incrementally formed shapes as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...