Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(16): 3152-3161, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35355042

RESUMO

Two-dimensional transition metal dichalcogenides have attracted widespread attention in cancer theranostics due to their high specific surface area and excellent photothermal conversion properties. However, their dimensions and biodegradability have limited the exploration of the therapeutic properties of transition metal dichalcogenides. Herein, we explore the mechanism of the keratin α-helix-to-random coil transition, as an actuation mechanism for the controllable design and precise synthesis of two-dimension copper sulfide nanoflakes (CuS NFs) with high absorption in the NIR-II window. Upon mixing keratin and Cu2+, the hydrogen bonds that maintain the α-helix are broken by copper ions to form biuret coordination, while the structure of the α-helix is transformed into a random coil, providing a more scalable space for the growth of CuS NFs. The CuS NFs prepared in this way possess the great advantages of outstanding uniformity, size controllability, and biodegradability. Importantly, the CuS NFs in the NIR-II window show an excellent photothermal conversion efficiency (32.9%) and extraordinary photoacoustic signal. This work updates the fabrication of two-dimensional transition metal dichalcogenides and greatly enhances their competitiveness in the area of cancer theranostics in the NIR-II region, and provides significant theoretical and practical opportunities for the development of keratin using biomimetic synthesis.


Assuntos
Cobre , Neoplasias , Biomimética , Cobre/química , Humanos , Queratinas , Neoplasias/tratamento farmacológico , Medicina de Precisão , Sulfetos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121177, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339098

RESUMO

As a kind of reactive oxygen species, peroxynitrite is related to various diseases closely such as cancer and neurodegenerative diseases. Constructing probes with highly specific ability and a wide linear detection range for peroxynitrite detection is crucial for understanding the pathogenesis of related diseases and optimizing treatments. In this work, we developed a novel luminescent ratiometric fluorescence nanoprobe (PC-CDs) based on carbon dots and phycocyanin. PC-CDs are constructed by amidation reaction between carbon dots and phycocyanin. The nanoprobe we obtained has a good ability of distinguishing peroxynitrite from other reactive oxygen species and interfering substances. Moreover, the linear range of the nanoprobe is 0.5-100 µM and the limit of detection is 0.5 µM when detecting peroxynitrite. In the spiked recovery experiments under phosphate buffered saline (PBS) environment, our nanoprobe has a good recovery performance and the recovery is 99% - 104%, which will be beneficial to the further development of peroxynitrite testing and the research progress of related diseases. Finally, we discuss the quenching mechanism of peroxynitrite for nanoprobe, and found that there is the combination of dynamic and static quenching in the quenching process.


Assuntos
Carbono , Pontos Quânticos , Fluorescência , Corantes Fluorescentes , Ácido Peroxinitroso , Ficocianina , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...