Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 339: 122413, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219919

RESUMO

AIMS: The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD: To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS: Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE: These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.


Assuntos
Clostridiales , Transtornos Cognitivos , Disfunção Cognitiva , Camundongos , Humanos , Animais , Idoso , Transtornos Cognitivos/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo
2.
Science ; 378(6616): 160-168, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227975

RESUMO

There has been a long-standing demand for noninvasive neuroimaging methods that can detect neuronal activity at both high temporal and high spatial resolution. We present a two-dimensional fast line-scan approach that enables direct imaging of neuronal activity with millisecond precision while retaining the high spatial resolution of magnetic resonance imaging (MRI). This approach was demonstrated through in vivo mouse brain imaging at 9.4 tesla during electrical whisker-pad stimulation. In vivo spike recording and optogenetics confirmed the high correlation of the observed MRI signal with neural activity. It also captured the sequential and laminar-specific propagation of neuronal activity along the thalamocortical pathway. This high-resolution, direct imaging of neuronal activity will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization, including the temporospatial dynamics of neural networks.


Assuntos
Mapeamento Encefálico , Neurônios , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Neurônios/fisiologia , Optogenética/métodos
3.
J Magn Reson Imaging ; 53(2): 360-373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32009271

RESUMO

Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Bainha de Mielina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...