Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325802

RESUMO

While global population growth drives increased production efficiency in animal agriculture, there is a growing demand for environmentally friendly practices, particularly in reducing air pollutant emissions from concentrated animal feeding operations. This study explores the potential of cultivating microalgae in photobioreactors (PBRs) as an eco-friendly and cost-effective approach to mitigate NH3 and CO2 emissions from pig barns. Unlike traditional physicochemical mitigation systems, microalgae offer a renewable solution by converting pollutants into valuable biomass. The research focused on Scenedesmus dimorphus growth under typical NH3 and CO2 concentrations found in the indoor air of pig barns. Four NH3 (0, 12, 25, and 50 ppm) and four CO2 concentrations (350, 1200, 2350, and 3500 ppm) were tested using photobioreactors. Results showed a maximum specific growth rate of 0.83 d-1 with 12 ppm NH3 and 3500 ppm CO2. The dry biomass concentration was significantly higher (1.16 ± 0.08 g L-1; p < 0.01) at 25 ppm NH3 and 2350 ppm CO2 than other test conditions. S. dimorphus demonstrated the peak NH3 and CO2 fixation rates (23.8 ± 2.26 mg NH3 L-1 d-1 and 432.24 ± 41.09 mg CO2 L-1 d-1) at 25 ppm NH3 and 2350 ppm CO2. These findings support the feasibility of using algae to effectively remove air pollutants in pig barns, thereby improving indoor air quality.

2.
Bioresour Technol ; 369: 128434, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473585

RESUMO

Scenedesmus dimorphus was cultivated in raw and pretreated swine wastewater (SW) with 6-L photobioreactors (PBRs) to investigate the effect of solid-liquid separation on algal growth. The same aerated PBRs containing no algae were used as control. Moderate COD and nitrogen removal from the SW was achieved with the algal PBRs. However, compared to the control reactors, they offered no consistent treatment boost. Improved algal growth occurred in the pretreated SW, as measured by maximum algal cell count (3202 ± 275 × 106 versus 2286 ± 589 × 106 cells L-1) and cell size. The enhanced algal growth in the pretreated SW resulted in relatively high nitrogen (5.7 %) and organic matter contents in the solids harvested at the end of cultivation experiments, with ∼25.6 % of nitrogen in the SW retained in the solids and ∼9.1 % absorbed by algae. The pretreatment also resulted in elevated phosphorus removal. This study is anticipated to foster the development of microalgae-based SW treatment processes.


Assuntos
Clorofíceas , Microalgas , Scenedesmus , Purificação da Água , Animais , Suínos , Águas Residuárias , Fotobiorreatores , Purificação da Água/métodos , Nitrogênio/análise , Fósforo , Biomassa
3.
Water Environ Res ; 88(10): 1050-124, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27620084

RESUMO

This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais , Esgotos , Poluentes Químicos da Água
4.
Water Environ Res ; 87(10): 1000-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26420079

RESUMO

This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.

5.
Oncotarget ; 6(35): 37526-43, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26462028

RESUMO

Distant relapse after chemotherapy is an important clinical issue for treating breast cancer patients and results from the development of cancer stem-like cells (CSCs) during chemotherapy. Here we report that blocking epithelial-to-mesenchymal transition (EMT) suppresses paclitaxel-induced CSCs properties by using a MDA-MB-231-xenografted mice model (in vivo), and breast cancer cell lines (in vitro). Paclitaxel, one of the cytotoxic taxane-drugs such as docetaxel, increases mesenchymal markers (Vimentin and Fibronectin) and decreases an epithelial marker (Zo-1). Blocking TGF-ß signaling with the TGF-ß type I receptor kinase (ALK5) inhibitor, EW-7197, suppresses paclitaxel-induced EMT and CSC properties such as mammosphere-forming efficiency (MSFE), aldehyde dehydrogenase (ALDH) activity, CD44+/CD24- ratio, and pluripotency regulators (Oct4, Nanog, Klf4, Myc, and Sox2). The combinatorial treatment of EW-7197 improves the therapeutic effect of paclitaxel by decreasing the lung metastasis and increasing the survival time in vivo. We confirmed that Snail is increased by paclitaxel-induced intracellular reactive oxygen species (ROS) and EW-7197 suppresses the paclitaxel-induced Snail and EMT by attenuating paclitaxel-induced intracellular ROS. Knock-down of SNAI1 suppresses paclitaxel-induced EMT and CSC properties. These data together suggest that blocking the Snail-induced EMT with the ALK5 inhibitor attenuates metastasis after paclitaxel-therapy and that this combinatorial approach could prove useful in treating breast cancer.


Assuntos
Neoplasias da Mama/prevenção & controle , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Water Sci Technol ; 57(2): 161-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18235166

RESUMO

This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L(-1) DO) and fully aerobic (3.7 and 5.4 mg L(-1) DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Oxigênio/química , Biomassa , Solubilidade , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...