Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420854

RESUMO

This paper proposes a reinforcement learning-aided channel estimator for time-varying multi-input multi-output systems. The basic concept of the proposed channel estimator is the selection of the detected data symbol in the data-aided channel estimation. To achieve the selection successfully, we first formulate an optimization problem to minimize the data-aided channel estimation error. However, in time-varying channels, the optimal solution is difficult to derive because of its computational complexity and the time-varying nature of the channel. To address these difficulties, we consider a sequential selection for the detected symbols and a refinement for the selected symbols. A Markov decision process is formulated for sequential selection, and a reinforcement learning algorithm that efficiently computes the optimal policy is proposed with state element refinement. Simulation results demonstrate that the proposed channel estimator outperforms conventional channel estimators by efficiently capturing the variation of the channels.


Assuntos
Algoritmos , Políticas , Simulação por Computador , Cadeias de Markov
2.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447853

RESUMO

In digital communication systems featuring high-resolution analog-to-digital converters (ADCs), the utilization of successive interference cancellation and detection can enhance the capacity of a Gaussian multiple access channel (MAC) by combining signals from multiple transmitters in a non-orthogonal manner. Conversely, in systems employing one-bit ADCs, it is exceedingly difficult to eliminate non-orthogonal interference using digital signal processing due to the considerable distortion present in the received signal when employing such ADCs. As a result, the Gaussian MAC does not yield significant capacity gains in such cases. To address this issue, we demonstrate that, under a given deterministic interference, the capacity of a one-bit-quantized channel becomes equivalent to the capacity without interference when an appropriate threshold value is chosen. This finding suggests the potential for indirect interference cancellation in the analog domain, facilitating the proposition of an efficient successive interference cancellation and detection scheme. We analyze the achievable rate of the proposed scheme by deriving the mutual information between the transmitted and received signals at each detection stage. The obtained results indicate that the sum rate of the proposed scheme generally outperforms conventional methods, with the achievable upper bound being twice as high as that of the conventional methods. Additionally, we have developed an optimal transmit power allocation algorithm to maximize the sum rate in fading channels.


Assuntos
Aclimatação , Algoritmos , Distribuição Normal , Processamento de Sinais Assistido por Computador
3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890826

RESUMO

The spherical-cap approximation of vector quantization (SCVQ) is an analytical model used for the mathematical analysis of multiple-input multiple-output (MIMO) systems with limited feedback. SCVQ closely emulates the distribution of the quantization error induced by the finite-rate quantization of a channel using a simple and analytically tractable approach. However, the conventional SCVQ model is not applicable when antenna-combining schemes such as quantization-based combining (QBC) are considered. Because QBC is an effective antenna-combining method that minimizes channel quantization errors, it can be adopted for various practical MIMO broadcast systems. Nevertheless, evaluating the performance of QBC-based MIMO systems with an explicit codebook can be extremely difficult, depending on the system complexity. To resolve this, this study generalizes the conventional SCVQ to be compatible with the QBC. The proposed generalized version of the SCVQ effectively emulates the quantization error obtained using QBC, while enabling a simple simulation independent of the number of feedback bits and mathematically tractable analysis. We validate the effectiveness of the proposed model by presenting a wireless communication application based on a dense cellular network.


Assuntos
Algoritmos , Simulação por Computador , Retroalimentação
4.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746162

RESUMO

This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process (MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently, a reinforcement learning algorithm is developed to solve the MDP problem with computational efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the results show that the proposed channel estimator significantly reduces the minimum-mean square error of the channel estimates, thus improving the block error rate compared to the conventional channel estimation.


Assuntos
Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...