Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 429: 266-71, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22578525

RESUMO

The oxy-fuel combustion system is a promising technology to control CO2 and NO(x) emissions. Furthermore, sulfation reaction mechanism under CO2-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO3) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO3, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO2 atmosphere due to the higher CO2 partial pressure. Instead, the sintering effect was dominant in the CO2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO2 atmospheres.

2.
Bioresour Technol ; 101(11): 4187-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20144863

RESUMO

A simple expression for the apparent reaction rate of large wood char gasification with steam is proposed. Large char samples were gasified under steam atmosphere using a thermo-balance reactor. The apparent reaction rate was expressed as the product of the intrinsic rate and the effective factor. The effective factor was modified to include the effect of change in char diameter and intrinsic reaction rate during the reaction. Assuming uniform conversion ratio throughout a particle, the simplified reaction scheme was divided into three stages. In the initial stage, the local conversion ratio increases without particle shrinkage. In the middle stage, the particle shrinks following the shrinking core model without change in the local conversion ratio. In the final stage, the local conversion ratio increases without particle shrinkage. The validity of the modified effective value was confirmed by comparison with experimental results.


Assuntos
Gases , Vapor , Madeira , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...