Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(19): 11174-11192, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977496

RESUMO

One of the fastest cellular responses to genotoxic stress is the formation of poly(ADP-ribose) polymers (PAR) by poly(ADP-ribose)polymerase 1 (PARP1, or ARTD1). PARP1 and its enzymatic product PAR regulate diverse biological processes, such as DNA repair, chromatin remodeling, transcription and cell death. However, the inter-dependent function of the PARP1 protein and its enzymatic activity clouds the mechanism underlying the biological response. We generated a PARP1 knock-in mouse model carrying a point mutation in the catalytic domain of PARP1 (D993A), which impairs the kinetics of the PARP1 activity and the PAR chain complexity in vitro and in vivo, designated as hypo-PARylation. PARP1D993A/D993A mice and cells are viable and show no obvious abnormalities. Despite a mild defect in base excision repair (BER), this hypo-PARylation compromises the DNA damage response during DNA replication, leading to cell death or senescence. Strikingly, PARP1D993A/D993A mice are hypersensitive to alkylation in vivo, phenocopying the phenotype of PARP1 knockout mice. Our study thus unravels a novel regulatory mechanism, which could not be revealed by classical loss-of-function studies, on how PAR homeostasis, but not the PARP1 protein, protects cells and organisms from acute DNA damage.


Assuntos
Dano ao DNA , Células-Tronco Embrionárias Murinas/metabolismo , Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Domínio Catalítico/genética , Células Cultivadas , Reparo do DNA , Replicação do DNA/genética , Cinética , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Modelos Genéticos , Mutação , Poli(ADP-Ribose) Polimerases/genética
2.
Nat Commun ; 4: 2993, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356582

RESUMO

Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.


Assuntos
Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases/metabolismo , Células 3T3 , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 1 do Ponto de Checagem , Chlorocebus aethiops , Cromatina/química , Dano ao DNA , Replicação do DNA , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , Proteínas Recombinantes/metabolismo , Fase S , Homologia de Sequência de Aminoácidos
3.
PLoS Genet ; 9(8): e1003702, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950734

RESUMO

ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins - Dpb11(TopBP1), Ddc1(Rad9) and Dna2 - all interact with and activate Mec1(ATR). Each contains an ATR activation domain (ADD) that interacts directly with the Mec1(ATR):Ddc2(ATRIP) complex. Any of the Dpb11(TopBP1), Ddc1(Rad9) or Dna2 ADDs is sufficient to activate Mec1(ATR) in vitro. All three can also independently activate Mec1(ATR) in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development.


Assuntos
Proteínas de Transporte/genética , Proliferação de Células , Senescência Celular/genética , Desenvolvimento Embrionário/genética , Alelos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Quinase 1 do Ponto de Checagem , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Camundongos , Fosforilação , Mutação Puntual , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Transdução de Sinais
4.
Biol Reprod ; 84(2): 218-28, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20881315

RESUMO

Sperm chromatin is organized in a protamine-based, highly condensed form, which protects the paternal chromosome complement in transit, facilitates fertilization, and supports correct gene expression in the early embryo. Very few histones remain selectively associated with genes and defined regulatory sequences essential to embryonic development, while most of the genome becomes bound to protamine during spermiogenesis. Chromatin remodeling processes resulting in the dramatically different nuclear structure of sperm are poorly understood. This study shows that perturbation of poly(ADP-ribose) (PAR) metabolism, which is mediated by PAR polymerases and PAR glycohydrolase in response to naturally occurring endogenous DNA strand breaks during spermatogenesis, results in the abnormal retention of core histones and histone linker HIST1H1T (H1t) and H1-like linker protein HILS1 in mature sperm. Moreover, genetic or pharmacological alteration of PAR metabolism caused poor sperm chromatin quality and an abnormal nuclear structure in mice, thus reducing male fertility.


Assuntos
Nucleoproteínas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Espermatogênese/fisiologia , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Quebras de DNA , Proteínas de Ligação a DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Espermátides/fisiologia , Espermatozoides/metabolismo
5.
Carcinogenesis ; 31(12): 2058-65, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926829

RESUMO

Poly(ADP-ribose) metabolism, mediated mainly by poly(ADP-ribose) polymerase (PARP) 1 and poly(ADP-ribose) glycohydrolase (PARG), regulates various cellular processes in response to genotoxic stress. PARP1 has been shown to be important in multiple cellular processes, including DNA repair, chromosomal stability, chromatin function, apoptosis and transcriptional regulation. However, whether PARP1's polymer synthesizing activity or polymer homeostasis is responsible for these functions remains largely unknown. Given a concerted action of multiple PARPs and unique PARG in the homeostasis of poly(ADP-ribosyl)ation, PARG is hypothesized to function in these processes. The lethal phenotype of the PARG null mutation in mouse embryos, however, hampers further investigation on biological function of PARG. Here, we show that mouse embryonic fibroblasts carrying a hypomorphic mutation of PARG, i.e. lacking the nuclear 110 kD isoform (PARG(110)(-/-)), have defects in the repair of DNA damage caused by various genotoxic agents. PARG(110)(-/-) cells exhibit genomic instability, characterized by a high frequency of sister chromatid exchange, micronuclei formation and chromosomal aberrations. Moreover, mutant cells contain supernumerary centrosomes, another hallmark of genomic instability, which correlates with an accumulation of S-phase cells after replication poison. Intriguingly, PARG(110)(-/-) cells accumulate more Rad51 foci in response to hydroxyurea, indicative of a defective repair of replication fork damage. Finally, PARG(110)(-/-) mice are susceptible to diethylnitrosamine-induced hepatocellular carcinoma. These data demonstrate that the homeostasis of poly(ADP-ribosyl)ation is important for an efficient DNA repair of damaged replication forks and for stabilizing the genome, thereby preventing carcinogenesis.


Assuntos
Núcleo Celular/enzimologia , Reparo do DNA , Instabilidade Genômica , Glicosídeo Hidrolases/fisiologia , Isoenzimas/fisiologia , Neoplasias/etiologia , Animais , Células Cultivadas , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Replicação do DNA , Neoplasias Hepáticas Experimentais/induzido quimicamente , Camundongos , Micronúcleos com Defeito Cromossômico , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/fisiologia , Rad51 Recombinase/fisiologia , Troca de Cromátide Irmã
6.
Stroke ; 41(1): 181-3, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892992

RESUMO

BACKGROUND AND PURPOSE: Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in ischemic preconditioning of the heart and cultured neurons, but its role in brain ischemic preconditioning is unknown. Summary of Report- We report that 5-minute bilateral common carotid artery occlusion (BCCAO) in the mouse prompted reduction of infarct volumes triggered 24 hours later by 20-minute middle cerebral artery occlusion (MCAO). Pharmacological PARP-1 inhibition between BCCAO and MCAO did not impair preconditioning. The contents of the PARP-1 substrate NAD, those of its product poly(ADP-ribose), caspase-3 activation, and PARP-1 expression did not change after BCCAO within the preconditioned tissue. PARP-1 KO mice were similarly protected by the 5-minute BCCAO. CONCLUSIONS: Data demonstrate that, at variance with the heart, PARP-1 is dispensable for brain ischemic preconditioning.


Assuntos
Isquemia Encefálica/enzimologia , Isquemia Encefálica/prevenção & controle , Precondicionamento Isquêmico/métodos , Poli(ADP-Ribose) Polimerases/biossíntese , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1
7.
Front Biosci (Landmark Ed) ; 14(5): 1619-26, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273151

RESUMO

Poly (ADP-robose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by members of the poly (ADP-ribose) polymerase (PARP) family of enzymes. The growing evidence supports the importance of a tight control of poly (ADP-ribose) metabolism by the two major enzymes, PARP-1 and PARG. Recent studies have advanced the understanding of PARPs' and PARG's functions in various cellular and physiological processes. In the last 10 years, homeostasis of poly (ADP-ribosyl)ation has been a target of pharmaceutical interventions for various pathologies. Although the polymer synthesizing enzyme PARP-1 has been well studied, the function of PARG remains largely unknown. However, a great effort has been made in recent years to delineate biological functions of PARG and to explore the therapeutical potentials of PARG inhibition in pathophysiological conditions such as inflammation, ischemia, stroke, and cancer chemotherapy.


Assuntos
Glicosídeo Hidrolases/metabolismo , Isoenzimas/metabolismo , Sequência de Aminoácidos , Animais , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética
8.
Free Radic Biol Med ; 42(1): 90-105, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17157196

RESUMO

Poly(ADP-ribose) is synthesized from nicotinamide adenine dinucleotide (NAD) by poly(ADP-ribose) polymerase 1 (PARP-1) and degraded by poly(ADP-ribose) glycohydrolase (PARG). The aim of the present study was to examine the role of PARG in the development of experimental colitis. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). Mice lacking the functional 110-kDa isoform of PARG (PARG(110)KO mice) were resistant to colon injury induced by DNBS. The mucosa of colon tissues showed reduction of myeloperoxidase activity and attenuated staining for intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. Moreover, overproduction of proinflammatory factors TNF-alpha and IL-1beta and activation of cell death signaling pathway, i.e., the FAS ligand, were inhibited in these mutant mice. Finally pharmacological treatment of WT mice with GPI 16552 and 18214, two novel PARG inhibitors, showed a significant protective effect in DNBS-induced colitis. These genetic and pharmacological studies demonstrate that PARG modulates the inflammatory response and tissue injury events associated with colitis and PARG may be considered as a novel target for pharmacological intervention for the pathogenesis.


Assuntos
Colite/terapia , Glicosídeo Hidrolases/fisiologia , Doenças Inflamatórias Intestinais/terapia , Animais , Benzenossulfonatos/toxicidade , Morte Celular , Colite/induzido quimicamente , Colite/enzimologia , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Interleucina-1beta/metabolismo , Camundongos , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
EMBO J ; 25(23): 5527-38, 2006 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17082765

RESUMO

NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting techniques. We show that cells lacking Nbs1 display reduced HR of the single DSB in chromosomally integrated substrate, affecting both homology-directed repair (HDR) and single-stranded annealing pathways, and, surprisingly, increased NHEJ-mediated sequence deletion. Moreover, focus formation at DSBs and chromatin recruitment of the Nbs1 partners Rad50 and Mre11 as well as Rad51 and Brca1 are attenuated in these cells, whereas the NHEJ molecule Ku70 binding to chromatin is not affected. These data provide a novel insight into the function of MRN in the branching of DSB repair pathways.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/fisiologia , Hidrolases Anidrido Ácido , Animais , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Cromatina/metabolismo , DNA de Cadeia Simples/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Integrases/metabolismo , Autoantígeno Ku , Proteína Homóloga a MRE11 , Camundongos , Proteínas Nucleares/genética , Rad51 Recombinase/metabolismo , Deleção de Sequência
10.
J Pharmacol Exp Ther ; 319(1): 127-38, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16825529

RESUMO

The aim of the present study was to examine the role of poly-(ADP-ribose) glycohydrolase (PARG) on the modulation of the inflammatory response and tissue injury associated with neurotrauma. Spinal cord trauma was induced in wild-type (WT) mice by the application of vascular clips (force of 24 g) to the dura via a two-level T(6) to T(7) laminectomy. Spinal cord injury in WT mice resulted in severe trauma characterized by edema, neutrophil infiltration, and cytokine production followed by recruitment of other inflammatory cells, production of a range of inflammation mediators, tissue damage, apoptosis, and disease. The genetic disruption of the PARG gene in mice or the pharmacological inhibition of PARG with GPI 16552 [N-bis-(3-phenyl-propyl)9-oxo-fluorene-2,7-diamide] (40 mg/kg i.p. bolus), a novel and potent PARG inhibitor, significantly reduced the degree of spinal cord inflammation and tissue injury (histological score), neutrophil infiltration, cytokine production (tumor necrosis factor-alpha and interleukin-1beta), and apoptosis. In a separate experiment, we have clearly demonstrated that PARG inhibition significantly ameliorated the recovery of limb function. Taken together, our results indicate that PARG activity modulates the inflammatory response and tissue injury events associated with spinal cord trauma and participate in target organ damage under these conditions.


Assuntos
Glicosídeo Hidrolases/fisiologia , Inflamação/etiologia , Traumatismos da Medula Espinal/enzimologia , Animais , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Fluorenos/uso terapêutico , Glicosídeo Hidrolases/antagonistas & inibidores , Interleucina-1/biossíntese , Masculino , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/análise , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Proteína X Associada a bcl-2/análise
11.
J Cereb Blood Flow Metab ; 26(5): 684-95, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16177811

RESUMO

Poly(ADP-ribose) (PAR) is a polymer synthesized by poly(ADP-ribose) polymerases (PARPs) and metabolized into free adenosine diphosphate (ADP)-ribose units by poly(ADP-ribose) glycohydrolase (PARG). Perturbations in PAR synthesis have been shown to play a key role in brain disorders including postischemic brain damage. A single parg gene but two PARG isoforms (110 and 60 kDa) have been detected in mouse cells. Complete suppression of parg gene causes early embryonic lethality, whereas mice selectively lacking the 110 kDa PARG isoform (PARG(110)(-/-)) develop normally. We used PARG(110)(-/-) mice to evaluate the importance of PAR catabolism to postischemic brain damage. Poly(ADP-ribose) contents were higher in the brain tissue of PARG(110)(-/-) than PARG(110)(+/+) mice, both under basal conditions and after PARP activation. Distal middle cerebral artery occlusion caused higher increase of brain PAR levels and larger infarct volumes in PARG(110)(-/-) mice than in wild-type counterparts. Of note, the brain of PARG(110)(-/-) mice showed reduced heat-shock protein (HSP)-70 and increased cyclooxygenase-2 expression under both control and ischemic conditions. No differences were detected in brain expression/activation of procaspase-3, PARP-1, Akt, HSP-25 and interleukin-1beta. Our findings show that PAR accumulation worsens ischemic brain injury, and highlight the therapeutic potential of strategies capable of maintaining PAR homeostasis.


Assuntos
Isquemia Encefálica/patologia , Glicosídeo Hidrolases/metabolismo , Isoenzimas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Isquemia Encefálica/metabolismo , Ativação Enzimática , Glicosídeo Hidrolases/genética , Homeostase , Técnicas In Vitro , Infarto da Artéria Cerebral Média , Isoenzimas/genética , Camundongos , Camundongos Knockout , NAD/metabolismo , Fármacos Neuroprotetores/metabolismo , Neurotoxinas/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...