Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(5): 2928-34, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26444037

RESUMO

The incorporated Zn(0.5)Cd(0.5)S (ZCS) nanorods with MoS2/RGO cocatalysts by a simultaneous reduction reaction was reported. The preparation of RGO and formation of MoS2 with intimate interfacial contact with ZCS were achieved. Through the optimizing of each component proportion, the ZCS@MoS2/RGO hybrid with 1.5 wt % MoS2 and 3 wt % RGO showed the highest photocatalytic H2 production activity (2.31 mmol/h) with long time stability (50 h). The relative mechanism has been investigated. It is believed that the stabilizing and improving solar H2 generation is originating from dual charge transfer pathway from excited ZCS to RGO, then to MoS2 due to intimate interfacial structure.

2.
Inorg Chem ; 47(17): 7813-23, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18681424

RESUMO

Different phases and morphologies of molybdate hydrates MMoO 4. nH 2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals, which include NiMoO 4.H 2O microflowers, MnMoO 4.H 2O microparallelogram plates, and CoMoO 4.3/4H 2O microrods, can be selectively synthesized by a hydrothermal process. The pH and reaction temperature have a crucial influence on the synthesis and shape evolution of the final products. Uniform CoMoO 4.3/4H 2O and NiMoO 4.H 2O nanorod bundles can be produced by a hydrothermal process with the assistance of PEG-400. The calcination of CoMoO 4.3/4H 2O and NiMoO 4.H 2O at 500 and 550 degrees C, respectively, allows the formation of monoclinic beta-CoMoO 4 and alpha-NiMoO 4. The antiferromagnetic property of MnMoO 4.H 2O, MnMoO 4, and CoMoO 4.3/4H 2O has been studied for the first time. The photocatalytic activity of metal molybdate particles with different morphologies has been tested by degradation of acid fuchsine under visible light. Electrochemical performances of MMoO 4 (M = Ni, Co) nanorod bundles and MnMoO 4 microrods have been evaluated.

3.
Langmuir ; 24(9): 5024-8, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18363416

RESUMO

Silica@carbon core-shell spheres have been synthesized via a hydrothermal carbonization procedure with glucose as the carbon precursor and silica spheres as the cores. Such SiO(2)@C core-shell spheres can be further used as templates to produce SiO(2)@C@SiO(2), and SiO(2)@SiO(2) spheres with a vacant region in two SiO(2) shells, noble-metal nanoparticle loaded SiO(2)@C core-shell spheres, and hollow carbon capsules through different follow-up processes. The obtained core-shell materials possess remarkable chemical reactivity in reducing noble-metal ions to nanoparticles, e.g., platinum. These unique core-shell spherical composites could find applications in catalyst supports, adsorbents, encapsulation, nanoreactors, and reaction templates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...