Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400038, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499465

RESUMO

Sulfadiazine (SFZ) is an inexpensive large-consumption antibiotic used for treat bacterial infections but an excess of residues in food can be harmful. Fast and specific luminescence detection of SFZ is highly challenging because of the interference of structurally similar antibiotics. In this work, we develop a two-dimensional europium-organic coordination polymer with excellent luminescence and water stability for highly specific detection of SFZ in the range of 0-0.2 mM. Structural analysis shows that the high stability of coordination polymer is due to the high coordination number of europium ion and the special chelating coordination structure of ligand. The experiment results revealed that the high selectivity and effectively luminescence quenched behaviour of coordination polymer toward SFZ is caused by highly efficient inner filter effect.

2.
Oncol Lett ; 16(4): 5375-5382, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30214617

RESUMO

Major depression disorder (MDD) has become increasingly common in patients with ovarian cancer, which complicates the treatment course. The microRNA (miRNA)-mRNA regulation network may help elucidate the potential mechanism of MDD in ovarian cancer. The differentially expressed microRNAs (DEmiRs) and mRNAs (DEmRNAs) were therefore identified from the GSE61741, GSE58105 and GSE9116 ovarian cancer datasets using GEO2R. The target genes of the DEmiRs were then obtained using the TargetScan, microRNAorg, microT-CDS, miRDB and miRTarBase prediction tools. The DAVID program was used to identify the KEGG pathways of target genes, and the core genes of major depressive disorder (MDD) were identified using the Kaplan-Meier Plotter for ovarian cancer. A total of 5 DEmiRs (miR-23b-3p, miR-33b-3p, miR-1265, miR-933 and miR-629-5p) were obtained from GSE61741 and GSE58105. The target genes of these DEmiRs were enriched in pathways that were considered high risk for developing MDD in ovarian cancer. A total of 11 risk genes were selected from these pathways as the core genes in the miRNA-mRNA network of MDD in ovarian cancer, and eventually identified the following 12 miRNA-mRNAs pairs: miR-629-5p-FGF1, miR-629-5p-AKT3, miR-629-5p-MAGI2, miR-933-BDNF, miR-933-MEF2A, miR-23b-3p-TJP1, miR-23b-3p-JMJD1, miR-23b-3p-APAF1, miR-23b-3p-CAB39, miR-1265-CDKN1B, miR-33b-3p-CDKN1B, and miR-33b-3p-F2R. These results may provide novel insights into the mechanisms of developing MDD in ovarian cancer patients.

3.
Mol Med Rep ; 17(3): 3591-3598, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29257335

RESUMO

DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein­protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG­I­like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll­like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2'­5'­oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin­like modifier, DExD/H­box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2'­5'­oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG­I­like receptor signaling, cytosolic DNA­sensing, toll­like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co­expressed tendency in multi­experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE.


Assuntos
Lúpus Eritematoso Sistêmico/patologia , Transcriptoma , Biologia Computacional , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência com Séries de Oligonucleotídeos , Mapas de Interação de Proteínas/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...