Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 98: 106472, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348259

RESUMO

A continuous esterification process is employed to decrease the free fatty acid (FFA) concentration of FFA-rich mixed crude palm oil. Both optimal and recommended conditions are determined for the esterification reaction conditions and the geometry of the 3D-printed rotor design in the rotor-stator hydrodynamic cavitation reactor. This study is primarily concerned with the effect of the cavitation device configuration, especially the rotor design, on FFA reduction. Instead of conventional spherical or cylindrical drilled holes, a point angle cone-shaped hole is used to create cavities over the rotor surface. These point angles are adjusted to clarify their effect on FFA reduction. The response surface methodology is applied to determine the optimal concentrations of methanol and sulfuric acid, rotor speed, hole diameter and depth, and cone point angle. The recommended conditions are 20.8 wt% methanol, 2.6 wt% sulfuric acid, 3000 rpm, 5 mm hole diameter, 5 mm hole depth, and 110°, respectively. Under this configuration, the FFA content is reduced from 12.014 wt% to around 1 wt%. A maximum yield of 97.34 vol% esterified oil is obtained through a completed phase separation step, and 93.31 vol% pure oil is collected after the cleansing step. The recommended conditions result in reduced chemical usage, cheaper FFA reduction, and lower environmental impact. This creative rotor design effectively improves our understanding of the geometry of the cavitation device, thus enhancing the cavitation effect in industrial operations.

2.
Ultrason Sonochem ; 83: 105926, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35091233

RESUMO

In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.


Assuntos
Hidrodinâmica , Impressão Tridimensional , Emulsões
3.
Ultrason Sonochem ; 72: 105419, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33316734

RESUMO

Free fatty acid (FFA) content in FFA-rich mixed crude palm oil (MCPO) was reduced through a continuous esterification process. The reaction conditions were optimized, the yield purified esterified oil was determined, and the average total electricity consumption of the entire process was evaluated. The key component of this study was the cost-effective, 3D-printed rotor that was installed in a continuous rotor-stator hydrodynamic reactor. The surface of the rotor was designed with spherical holes where the center-to-center distance between them was fixed. Response surface methodology (RSM) using central composite design (CCD) was employed to analyze the design of experiments (DOE) and optimize FFA-content reduction. The optimized conditions were 17.7 vol% methanol, 2.9 vol% sulfuric acid, a 3000 rpm rotor speed, and surface holes measuring 4 mm in diameter and 6 mm in depth. The experimental results showed that the FFA content in MCPO was reduced from 11.456 to 1.028 wt% upon esterification under these optimal conditions. The maximum yield of esterified oil from the phase separation step was 96.07 vol%, and that of the purified esterified oil was 91.27 vol%. The average total energy consumed by this hydrodynamic cavitation reactor to produce this esterified oil was 0.0264 kW h/L. This 3D printed rotor-stator reactor is a promising, novel reactor technology for producing biodiesel from FFA-rich oils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...