Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433525

RESUMO

Demonstration of the Salmonella Typhimurium detection system was shown utilizing a quartz crystal microbalance (QCM) biosensor and signal enhancement by gold nanoparticles. In this study, a benchtop system of a QCM biosensor was utilized for the detection of Salmonella Typhimurium. It was designed with a peristaltic pump system to achieve immobilization of antibodies, detection of Salmonella, and the addition of gold nanoparticles to the sensor. As a series of biochemical solutions were introduced to the surface, the proposed system was able to track the changes in the resonant frequency which were proportional to the variations of mass on the sensor. For antibody immobilization, polyclonal antibodies were immobilized via self-assembled monolayers to detect Salmonella O-antigen. Subsequently, Salmonella Typhimurium was detected by antibodies and the average frequency before and after detecting Salmonella was compared. The highest frequency shifts were −26.91 Hz for 109 CFU/mL while the smallest frequency shift was −3.65 Hz corresponding to 103 CFU/mL. For the specificity tests, non-Salmonella samples such as E. coli, Listeria, and Staphylococcus resulted in low cross-reactivity. For signal amplification, biotinylated antibodies reacted to Salmonella followed by streptavidin­100 nm AuNPs through biotin-avidin interaction. The frequency shifts of 103 CFU/mL showed −28.04 Hz, and consequently improved the limit of detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas de Microbalança de Cristal de Quartzo/métodos , Ouro/química , Salmonella typhimurium , Escherichia coli , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
2.
J Imaging ; 7(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460806

RESUMO

Hand-hygiene is a critical component for safe food handling. In this paper, we apply an iterative engineering process to design a hand-hygiene action detection system to improve food-handling safety. We demonstrate the feasibility of a baseline RGB-only convolutional neural network (CNN) in the restricted case of a single scenario; however, since this baseline system performs poorly across scenarios, we also demonstrate the application of two methods to explore potential reasons for its poor performance. This leads to the development of our hierarchical system that incorporates a variety of modalities (RGB, optical flow, hand masks, and human skeleton joints) for recognizing subsets of hand-hygiene actions. Using hand-washing video recorded from several locations in a commercial kitchen, we demonstrate the effectiveness of our system for detecting hand hygiene actions in untrimmed videos. In addition, we discuss recommendations for designing a computer vision system for a real application.

3.
J Microbiol Methods ; 188: 106288, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280431

RESUMO

Salmonella spp. are a foodborne pathogen frequently found in raw meat, egg products, and milk. Salmonella is responsible for numerous outbreaks, becoming a frequent major public-health concern. Many studies have recently reported handheld and rapid devices for microbial detection. This study explored a smartphone-based lateral-flow assay analyzer which employed machine-learning algorithms to detect various concentrations of Salmonella spp. from the test line images. When cell numbers are low, a faint test line is difficult to detect, leading to misleading results. Hence, this study focused on the development of a smartphone-based lateral-flow assay (SLFA) to distinguish ambiguous concentrations of test line with higher confidence. A smartphone cradle was designed with an angled slot to maximize the intensity, and the optimal direction of the optimal incident light was found. Furthermore, the combination of color spaces and the machine-learning algorithms were applied to the SLFA for classifications. It was found that the combination of L*a*b and RGB color space with SVM and KNN classifiers achieved the high accuracy (95.56%). A blind test was conducted to evaluate the performance of devices; the results by machine-learning techniques reported less error than visual inspection. The smartphone-based lateral-flow assay provided accurate interpretation with a detection limit of 5 × 104 CFU/mL commercially available lateral-flow assays.


Assuntos
Técnicas Bacteriológicas/métodos , Diagnóstico por Imagem/métodos , Aprendizado de Máquina , Salmonella/isolamento & purificação , Smartphone , Animais , Técnicas Biossensoriais/instrumentação , Colorimetria/instrumentação , Diagnóstico por Imagem/instrumentação , Microbiologia de Alimentos , Humanos , Infecções por Salmonella
4.
J Imaging ; 6(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34460564

RESUMO

A majority of foodborne illnesses result from inappropriate food handling practices. One proven practice to reduce pathogens is to perform effective hand-hygiene before all stages of food handling. In this paper, we design a multi-camera system that uses video analytics to recognize hand-hygiene actions, with the goal of improving hand-hygiene effectiveness. Our proposed two-stage system processes untrimmed video from both egocentric and third-person cameras. In the first stage, a low-cost coarse classifier efficiently localizes the hand-hygiene period; in the second stage, more complex refinement classifiers recognize seven specific actions within the hand-hygiene period. We demonstrate that our two-stage system has significantly lower computational requirements without a loss of recognition accuracy. Specifically, the computationally complex refinement classifiers process less than 68% of the untrimmed videos, and we anticipate further computational gains in videos that contain a larger fraction of non-hygiene actions. Our results demonstrate that a carefully designed video action recognition system can play an important role in improving hand hygiene for food safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...