Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(25): 4178-4186, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38874550

RESUMO

A novel bifunctional magnetic sorbent with mercapto and amino groups and ion imprinting (MBII) was synthesized using a one-step aqueous sol-gel process for preconcentration and determination of Cd(II) ions. MBII was employed as a microcolumn (MC) filler in a flow-through system coupled to GFAAS. The magnetic properties of the solid allowed microcolumn magnetic solid-phase extraction (MCMSPE) to be performed by simply including a single circular magnet around the MC. This assembly enabled complete attachment of the solid to the MC wall leaving a central void to facilitate higher sample flow rates without blockage or material loss. For comparison, a bifunctional magnetic solid without imprinting (MBNI) was also synthesized and evaluated. Both MBII and MBNI were characterized by FTIR, SEM, EDX, BET and magnetization measurements. The results showed the preservation of the magnetic core, its superparamagnetism and the functional groups in the solid. Batch studies revealed a maximum adsorption capacity for both materials at pH around 6 with equilibrium reached within 5 minutes. The advantages were reflected in the maximum adsorption capacity of MBII, which was found to be 2.5 times greater than that of MBNI. Both adsorbents were compared as MC fillers for dynamic preconcentration in MCMSPE systems. Under optimized conditions, MBNI showed a PCF of 125 and MBII of 250. The higher selectivity of MBII was corroborated by interfering ion studies. The analytical performance parameters for the proposed method using MBII as an adsorbent showed a detection limit of 0.05 ng L-1, a linear range of 2.0-80 ng L-1, an RSD% of 2.2 (n = 7; 20 ng L-1) and a lifetime of more than 300 preconcentration-elution cycles without loss of sensitivity or need for refilling. The method was successfully applied to the determination of trace Cd(II) in osmosis, lake and tap water with recoveries ranging from 98 to 105%. Comparison of these results with those of similar reported methods showed a considerable improvement primarily attributed to the combined effect of MBII's higher retention capacity and its magnetic properties that allowed higher sample flow rates and, thus, enhanced figures of merit.

2.
Photochem Photobiol ; 100(1): 244-253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37344925

RESUMO

The concept of modern human sun protection is no more than one hundred years, but real development of it, including protection against UVA + UVB radiation (and more recently also the IR and blue light), has been no more than 30 years. One fundamental issue while formulating sunscreens is the photostability of the UV filters, which is particularly feeble for the UVA. The gold standard for the determination of sunscreen UVA protection "in vitro" is ISO 24443:2021. Still, interlaboratory results are not as consistent as expected. The Technical Committee for Cosmetics (ISO TC 217) has tried to standardize the method with precise specifications for the materials and equipment used. In particular, the standardization of UV exposure sources based on Xe arc lamps. This fact requires expensive equipment out of the reach of many laboratories to achieve adequate temperature control on the samples. In this paper, it will be shown that, within the experimental error, satisfactory results were achieved with a cheap commercial LED source irradiating only in the UVA spectra. Evidence is presented to conclude that other more relevant factors must be considered as the main cause of uncertainties.

3.
Anal Methods ; 14(30): 2920-2928, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35861161

RESUMO

In this paper we present the determination of ultratraces of cadmium ions in water by means of a minicolumn (MC) flow-through preconcentration system coupled with graphite furnace atomic absorption spectrometry. The core of the system is a lab-made ion imprinted magnetic organosilica nanocomposite which is employed as filler of the MC for the selective retention of the analyte. In this case superparamagnetic magnetite nanoparticles were coated with an amine-functionalized shell and ion imprinted with Cd(II) by a simple sol-gel co-condensation method. The setup was completed with the inclusion of a magnet fixed around the packed MC. This assembly - which is studied with an MII material for the first time here - allowed a homogeneous distribution of the solid on the walls of the MC, leaving a hole in the center and enabling the absence of material bleeding or obstructions to the free movement of fluids. Ion imprinted (MII) and non-imprinted (MNI) materials were studied for comparison purposes. Both were characterized and compared by DRX, FTIR, and SEM and their magnetic behavior by magnetization curves. Batch experiments showed an equilibration time of less than 10 minutes and a maximum adsorption pH of around 7 for both solids. The maximum capacity for MII was greater than that of MNI (200 mg g-1 and 30 mg g-1 respectively) and thus, the former was chosen for analytical purposes. Under MC dynamic conditions, sample and elution flow rates, volumes of the sample and eluant, and type and concentration of the most suitable eluant have been thoroughly investigated and optimized. Under the optimal experimental conditions, the MII filler showed a preconcentration factor of 200, a limit of detection of 0.64 ng L-1, a linear range of 2.5-100 ng L-1, RSD% of 1.9 (n = 6; 10 ng L-1) and a lifetime of more than 800 cycles of concentration-elution with no loss of sensitivity or need for refilling. The effect of potentially interfering ions on the percent recovery of cadmium was also studied. The proposed method was successfully applied to the determination of traces of Cd(II) in osmosis and tap water with recoveries of 98.0-101.3%. A comparison with similar methods is also provided.


Assuntos
Grafite , Nanocompostos , Cádmio/análise , Cádmio/química , Fenômenos Magnéticos , Espectrofotometria Atômica/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...