Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
NAR Genom Bioinform ; 5(2): lqad049, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260512

RESUMO

Bacterial Wars (BW) is a network-based tool that applies a two-step pipeline to display information on the competition of bacterial species found in the same microbiome. It utilizes antimicrobial peptide (AMP) sequence similarities to obtain a relationship between species. The working hypothesis (putative AMP defense) is that friendly species share sequence similarity among the putative AMPs of their proteomes and are therefore immune to their AMPs. This may not happen in competing bacterial species with dissimilar putative AMPs. Similarities in the putative AMPs of bacterial proteomes may be thus used to predict predominance. The tool provides insights as to which bacterial species are more likely to 'die' in a competing environmental niche.

2.
Comput Struct Biotechnol J ; 21: 378-387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618987

RESUMO

PathIN is a web-service that provides an easy and flexible way for rapidly creating pathway-based networks at several functional biological levels: genes, compounds and reactions. The tool is supported by a database repository of reference pathway networks across a large set of species, developed through the freely available information included in the KEGG, Reactome and Wiki Pathways database repositories. PathIN provides networks by means of five diverse methodologies: (a) direct connections between pathways of interest, (b) direct connections as well as the first neighbours of the given pathways, (c) direct connections, the first neighbours and the connections in between them, and (d) two additional methodologies for creating complementary pathway-to-pathway networks that involve additional (missing) pathways that interfere in-between pathways of interest. PathIN is expected to be used as a simple yet informative reference tool for understanding networks of molecular mechanisms related to specific diseases.

3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36513376

RESUMO

We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets. Vir2Drug is a useful and yet informative tool for drug repurposing against known or unknown pathogens especially in periods where the emergence for repurposed drugs plays significant role in handling viral outbreaks, until reaching a vaccine. The web tool is available at: https://bioinformatics.cing.ac.cy/vir2drug, https://vir2drug.cing-big.hpcf.cyi.ac.cy.


Assuntos
Reposicionamento de Medicamentos , Proteínas
4.
Comput Struct Biotechnol J ; 19: 4336-4344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429851

RESUMO

A fundamental issue related to the understanding of the molecular mechanisms, is the way in which common pathways act across different biological experiments related to complex diseases. Using network-based approaches, this work aims to provide a numeric characterization of pathways across different biological experiments, in the prospect to create unique footprints that may characterise a specific disease under study at a pathway network level. In this line we propose PathExNET, a web service that allows the creation of pathway-to-pathway expression networks that hold the over- and under expression information obtained from differential gene expression analyses. The unique numeric characterization of pathway expression status related to a specific biological experiment (or disease), as well as the creation of diverse combination of pathway networks generated by PathExNET, is expected to provide a concrete contribution towards the individualization of disease, and further lead to a more precise personalised medicine and management of treatment. PathExNET is available at: https://bioinformatics.cing.ac.cy/PathExNET and at https://pathexnet.cing-big.hpcf.cyi.ac.cy/.

5.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009288

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts' curation and drug-target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/química , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
6.
PLoS One ; 16(1): e0238665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497392

RESUMO

This study aims to highlight SARS-COV-2 mutations which are associated with increased or decreased viral virulence. We utilize genetic data from all strains available from GISAID and countries' regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of specific mutations can be obtained from calculating their frequencies across viral strains. By applying modelling approaches, we provide additional information that is not evident from standard statistics or mutation frequencies alone. We therefore, propose a more precise way of selecting informative mutations. We highlight two interesting mutations found in genes N (P13L) and ORF3a (Q57H). The former appears to be significantly associated with decreased deaths and cases per million according to our models, while the latter shows an opposing association with decreased deaths and increased cases per million. Moreover, protein structure prediction tools show that the mutations infer conformational changes to the protein that significantly alter its structure when compared to the reference protein.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Proteínas Viroporinas/genética , COVID-19/transmissão , Proteínas do Nucleocapsídeo de Coronavírus/química , Sistemas de Informação Geográfica , Humanos , Modelos Lineares , Mutação , Pandemias , Fosfoproteínas/química , Fosfoproteínas/genética , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , Proteínas Viroporinas/química
7.
Methods Mol Biol ; 2189: 231-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33180305

RESUMO

Signal transduction tasks as well as other complex biological processes involve many different changes in groups of genes, proteins, and metabolites linked together in chains or networks called pathways or networks of pathways. In a classical functional analysis, the biomolecules found to play a role in the biological status under investigation are members of a group of pathways that are not necessarily interconnected. However, interconnectivity is a critical factor for functionality. Thus, it is necessary to be able to construct "connected functional stories" to understand better the complex biological processes. PathwayConnector is a recently introduced web-tool that facilitates the construction of complementary pathway-to-pathway networks, bringing to our attention missing pathways that are crucial links towards the understanding of the molecular mechanisms related to complex diseases. Current version of the web-tool draws from an expanded pathway reference network and provides information deriving from 19 different organisms and 2 different pathway repositories: the KEGG and the REACTOME. Novel genes, proteins, and pathways derived from any experimental/computational method either in large-scale (omics) or even in smaller scale (specific laboratory experiments) can potentially be projected and analyzed through PathwayConnector. This chapter describes in details the pipeline and methodologies used for the latest updated version of PathwayConnector, providing an easy way for rapidly relating human or other organism's pathways together. Recent studies have shown that pathway networks and subnetworks, generated by PathwayConnector, are an integral part towards the individualization of disease, leading to a more precise and personalized management of the treatment.


Assuntos
Algoritmos , Biologia Computacional , Modelos Biológicos , Transdução de Sinais , Software
8.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028009

RESUMO

Significant seismicity anomalies preceded the 25 October 2018 mainshock (Mw = 6.8), NW Hellenic Arc: a transient intermediate-term (~2 yrs) swarm and a short-term (last 6 months) cluster with typical time-size-space foreshock patterns: activity increase, b-value drop, foreshocks move towards mainshock epicenter. The anomalies were identified with both a standard earthquake catalogue and a catalogue relocated with the Non-Linear Location (NLLoc) algorithm. Teleseismic P-waveforms inversion showed oblique-slip rupture with strike 10°, dip 24°, length ~70 km, faulting depth ~24 km, velocity 3.2 km/s, duration 18 s, slip 1.8 m within the asperity, seismic moment 2.0 × 1026 dyne*cm. The two largest imminent foreshocks (Mw = 4.1, Mw = 4.8) occurred very close to the mainshock hypocenter. The asperity bounded up-dip by the foreshocks area and at the north by the foreshocks/swarm area. The accelerated foreshocks very likely promoted slip accumulation contributing to unlocking the asperity and breaking with the mainshock. The rupture initially propagated northwards, but after 6 s stopped at the north bound and turned southwards. Most early aftershocks concentrated in the foreshocks/swarm area. This distribution was controlled not only by stress transfer from the mainshock but also by pre-existing stress. In the frame of a program for regular monitoring and near real-time identification of seismicity anomalies, foreshock patterns would be detectable at least three months prior the mainshock, thus demonstrating the significant predictive value of foreshocks.

9.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937819

RESUMO

Spastic ataxia (SA) is a group of rare neurodegenerative diseases, characterized by mixed features of generalized ataxia and spasticity. The pathogenetic mechanisms that drive the development of the majority of these diseases remain unclear, although a number of studies have highlighted the involvement of mitochondrial and lipid metabolism, as well as calcium signaling. Our group has previously published the GBA2 c.1780G > C (p.Asp594His) missense variant as the cause of spastic ataxia in a Cypriot consanguineous family, and more recently the biochemical characterization of this variant in patients' lymphoblastoid cell lines. GBA2 is a crucial enzyme of sphingolipid metabolism. However, it is unknown if GBA2 has additional functions and therefore additional pathways may be involved in the disease development. The current study introduces bioinformatics approaches to better understand the pathogenetic mechanisms of the disease. We analyzed publicly available human gene expression datasets of diseases presented with 'ataxia' or 'spasticity' in their clinical phenotype and we performed pathway analysis in order to: (a) search for candidate perturbed pathways of SA; and (b) evaluate the role of sphingolipid signaling pathway and sphingolipid metabolism in the disease development, through the identification of differentially expressed genes in patients compared to controls. Our results demonstrate consistent differential expression of genes that participate in the sphingolipid pathways and highlight alterations in the pathway level that might be associated with the disease phenotype. Through enrichment analysis, we discuss additional pathways that are connected to sphingolipid pathways, such as PI3K-Akt signaling, MAPK signaling, calcium signaling, and lipid and carbohydrate metabolism as the most enriched for ataxia and spasticity phenotypes.


Assuntos
Deficiência Intelectual/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , Transdução de Sinais/genética , Ataxias Espinocerebelares/genética , Transcriptoma/genética , Sinalização do Cálcio/genética , Metabolismo dos Carboidratos/genética , Glucosilceramidase/genética , Humanos , Metabolismo dos Lipídeos/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Esfingolipídeos/genética
10.
Comput Struct Biotechnol J ; 18: 1695-1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670509

RESUMO

ProTExA is a web-tool that provides a post-processing workflow for the analysis of protein and gene expression datasets. Using network-based bioinformatics approaches, ProTExA facilitates differential expression analysis and co-expression network analysis as well as pathway and post-pathway analysis. Specifically, for a given set of protein-gene expression data across samples, ProTExA: (1) performs statistical analysis and filtering to highlight the differentially expressed proteins-genes, (2) performs enrichment analysis to identify top-scored pathways, (3) generates pathway-to-pathway and pathway-to-gene networks (4) generates protein and gene co-expression networks using a variety of methodologies, and (5) applies clustering methodologies to identify sub-networks of co-expressed proteins-genes. The proposed web-tool is a simple yet informative tool, towards understanding and exploitation of protein and gene expression datasets, especially for those that do not have the expertise and local resources to replicate specific analyses in the context of collaborative and scientific data exchanging.

11.
Bioinformatics ; 36(13): 4070-4079, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369599

RESUMO

MOTIVATION: Understanding the underlying biological mechanisms and respective interactions of a disease remains an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism communities and reveal respective relationships can be of great value as they can help expedite the process of identifying how perturbations in a single pathway can affect other pathways. RESULTS: We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by integrating multi-source information regarding a specific disease. The most frequent trajectories highlight communities of pathways that are expected to be strongly related to the disease under study.We apply the PathWalks methodology on Alzheimer's disease and idiopathic pulmonary fibrosis and establish that it can highlight pathways that are also identified by other pathway analysis tools as well as are backed through bibliographic references. More importantly, PathWalks produces additional new pathways that are functionally connected with those already established, giving insight for further experimentation. AVAILABILITY AND IMPLEMENTATION: https://github.com/vagkaratzas/PathWalks. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Doença de Alzheimer , Redes Reguladoras de Genes , Doença de Alzheimer/genética , Humanos , Software
12.
Respir Med Case Rep ; 30: 101036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190546

RESUMO

Catamenial pneumothorax (CP) is considered to be the most common form of thoracic endometriosis syndrome, which also includes catamenial hemothorax, catamenial hemopneumothorax, catamenial hemoptysis, and endometriosis lung nodules. Diagnosis can be hinted by high recurrence rates of lung collapse in a woman of reproductive age with endometriosis. In our case we present a 41 year old woman at the time of the second incidence with a left pneumothorax and holes in the pericardium in the diaphragm location. Laparoscopic evaluation was performed along with video-assisted thoracoscopy and treatment was performed with both techniques.

13.
Comput Struct Biotechnol J ; 17: 939-945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360332

RESUMO

Drug repurposing techniques allow existing drugs to be tested against diseases outside their initial spectrum, resulting in reduced cost and eliminating the long time-frames of new drug development. In silico drug repurposing further speeds up the process either by proposing drugs suitable to invert the transcriptomic profile of a disease or by indicating drugs based on their common targets or structural similarity with other drugs with similar mode of action. Such methods usually return a number of potential repurposed drugs that need to be tested against the disease in in vitro, pre-clinical and clinical studies. Thus, it is crucial to have a more sophisticated candidate drug ranking in order to start testing from the most promising chemical substances. As a means to enhance the above decision process, we present CoDReS (Composite Drug Reranking Scoring), a drug (re-)ranking web-based tool, which combines an initial drug ranking (i.e. repurposing score or hypothesis/potentiality score) with a functional score of each drug considered in conjunction with the disease under study as well as with a structural score derived from potential drugability violations. Furthermore, a structural similarity clustering is applied on the considered drugs and a handful of structural exemplars are suggested for further in vitro and in vivo validation. The user is able to filter the results further, through structural similarity examination of the candidate drugs with drugs that have failed against the queried disease where related clinical trials have been carried out. CoDReS is publicly available online at http://bioinformatics.cing.ac.cy/codres.

14.
Sci Rep ; 9(1): 3266, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824863

RESUMO

Variants of unknown/uncertain significance (VUS) pose a huge dilemma in current genetic variation screening methods and genetic counselling. Driven by methods of next generation sequencing (NGS) such as whole exome sequencing (WES), a plethora of VUS are being detected in research laboratories as well as in the health sector. Motivated by this overabundance of VUS, we propose a novel computational methodology, termed VariantClassifier (VarClass), which utilizes gene-association networks and polygenic risk prediction models to shed light into this grey area of genetic variation in association with disease. VarClass has been evaluated using numerous validation steps and proves to be very successful in assigning significance to VUS in association with specific diseases of interest. Notably, using VUS that are deemed significant by VarClass, we improved risk prediction accuracy in four large case-studies involving disease-control cohorts from GWAS as well as WES, when compared to traditional odds ratio analysis. Biological interpretation of selected high scoring VUS revealed interesting biological themes relevant to the diseases under investigation. VarClass is available as a standalone tool for large-scale data analyses, as well as a web-server with additional functionalities through a user-friendly graphical interface.


Assuntos
Redes Reguladoras de Genes , Predisposição Genética para Doença , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Análise Mutacional de DNA , Estudo de Associação Genômica Ampla , Humanos
15.
Int J Mol Sci ; 20(1)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621163

RESUMO

Extracellular matrix (ECM)-related adhesion proteins are important in metastasis. Ras suppressor-1 (RSU-1), a suppressor of Ras-transformation, is localized to cell⁻ECM adhesions where it interacts with the Particularly Interesting New Cysteine-Histidine rich protein (PINCH-1), being connected to Integrin Linked Kinase (ILK) and alpha-parvin (PARVA), a direct actin-binding protein. RSU-1 was also found upregulated in metastatic breast cancer (BC) samples and was recently demonstrated to have metastasis-promoting properties. In the present study, we transiently silenced RSU-1 in BC cells, MCF-7 and MDA-MB-231. We found that RSU-1 silencing leads to downregulation of Growth Differentiation Factor-15 (GDF-15), which has been associated with both actin cytoskeleton reorganization and metastasis. RSU-1 silencing also reduced the mRNA expression of PINCH-1 and cell division control protein-42 (Cdc42), while increasing that of ILK and Rac regardless of the presence of GDF-15. However, the downregulation of actin-modulating genes PARVA, RhoA, Rho associated kinase-1 (ROCK-1), and Fascin-1 following RSU-1 depletion was completely reversed by GDF-15 treatment in both cell lines. Moreover, complete rescue of the inhibitory effect of RSU-1 silencing on cell invasion was achieved by GDF-15 treatment, which also correlated with matrix metalloproteinase-2 expression. Finally, using a graph clustering approach, we corroborated our findings. This is the first study providing evidence of a functional association between RSU-1 and GDF-15 with regard to cancer cell invasion.


Assuntos
Neoplasias da Mama/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo , Feminino , Inativação Gênica , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/genética
16.
Brief Bioinform ; 20(3): 806-824, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29186305

RESUMO

Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine.


Assuntos
Biologia Computacional , Medicina de Precisão/métodos , Biologia de Sistemas/métodos , Biomarcadores/metabolismo , Diagnóstico por Computador , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
17.
Bioinformatics ; 35(5): 889-891, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124768

RESUMO

SUMMARY: PathwayConnector is a web-tool that facilitates the construction of complementary pathway-to-pathway networks and subnetworks of them, based on a reference pathway network derived from the rich information available either in KEGG or Reactome database for pathway mapping. Specifically, for a given set of pathways, PathwayConnector (i) finds all the direct connections between them, (ii) adds a minimum set of complementary pathways required to achieve connectivity between the pathways, leading to informative fully connected networks and (ii) provides a series of clustering methods for the further grouping of pathways in to sub-clusters. The proposed web-tool is a simple yet informative tool towards identifying connected groups of pathways that are significantly related to specific diseases. AVAILABILITY AND IMPLEMENTATION: http://bioinformatics.cing.ac.cy/PathwayConnector. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Análise por Conglomerados , Bases de Dados Factuais
18.
IEEE J Biomed Health Inform ; 23(1): 26-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176611

RESUMO

The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.


Assuntos
Biologia Computacional/métodos , Doença de Huntington , Deficiência Intelectual , Espasticidade Muscular , Atrofia Óptica , Mapas de Interação de Proteínas , Transdução de Sinais , Ataxias Espinocerebelares , Glucosilceramidase , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Informática Médica , Espasticidade Muscular/genética , Espasticidade Muscular/metabolismo , Espasticidade Muscular/fisiopatologia , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/fisiopatologia , Medicina de Precisão , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/fisiopatologia , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
19.
J Proteomics ; 188: 15-29, 2018 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-29545169

RESUMO

The abundance of available information for each disease from multiple sources (e.g. as genetic, regulatory, metabolic, and protein-protein interaction) constitutes both an advantage and a challenge in identifying disease-specific underlying mechanisms. Integration of multi-source data is a rising topic and a great challenge in precision medicine and is crucial in enhancing disease understanding, identifying meaningful clusters of molecular mechanisms and increasing precision and personalisation towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The overall aim of this work was to develop a novel network-based integration methodology with the following characteristics: (i) maximise the number of data sources, (ii) utilise holistic approaches to integrate these sources (iii) be simple, flexible and extendable, (iv) be conclusive. Here, we present the case of Alzheimer's disease as a paradigm for illustrating our novel approach. SIGNIFICANCE: In this work we present an integration methodology, which aggregates a large number of the available data sources and types by exploiting the holistic nature of network approaches. It is simple, flexible and extendable generating solid conclusions regarding the molecular mechanisms that underlie the input data. We have illustrated the strength of our proposed methodology using Alzheimer's disease as a paradigm. This method is expected to serve as a stepping-stone for further development of integration methods of multi-source omic-data and to contribute to progress towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The output of this methodology may act as a reference map of implicated pathways in the disease under investigation, where pathways related to additional omics data from any kind of experiment may be projected. This will increase the precision in the understanding of the disease and may contribute to personalised approaches for patients with different disease-related pathway profile, leading to a more precise, personalised and ideally preventive management of the disease.


Assuntos
Análise por Conglomerados , Agregação de Dados , Medicina de Precisão/métodos , Doença de Alzheimer , Humanos , Serviços de Informação
20.
J Chemother ; 30(3): 140-144, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29182058

RESUMO

Mycoplasma hominis and Ureaplasma species are opportunistic pathogens associated with urogenital infections, complications during pregnancy and postpartum infections. Appropriate empirical antimicrobial treatment is necessary to achieve an optimal therapeutic outcome. This study evaluated the prevalence and the antimicrobial susceptibility of Mycoplasma hominis and Ureaplasma spp. isolated from 1,008 endocervical samples of outpatients in Crete, Greece, during a five-year period (2012-2016), using the commercially available Mycoview kit (Zeakon diagnostics, France). Ureaplasma spp. was isolated from 116 patients (11.5%), M. hominis from 6 (0.6%), while coinfection with both mycoplasmas was demonstrated in 17 (1.7%). All Ureaplasma strains were susceptible to josamycin and doxycycline. Doxycycline, minocycline and ofloxacin were the most potent antibiotics against M. hominis. Docycycline was proved the most active and is still the drug of choice for the treatment of genital mycoplasma infections. Local surveillance to monitor changes in antimicrobial susceptibilities is necessary to guide treatment strategies.


Assuntos
Coinfecção/epidemiologia , Infecções por Mycoplasma/epidemiologia , Mycoplasma hominis/isolamento & purificação , Pacientes Ambulatoriais/estatística & dados numéricos , Infecções por Ureaplasma/epidemiologia , Ureaplasma/isolamento & purificação , Infecções Urinárias/epidemiologia , Adolescente , Adulto , Idoso , Anti-Infecciosos/uso terapêutico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Feminino , Grécia/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/microbiologia , Gravidez , Prevalência , Fatores de Tempo , Infecções por Ureaplasma/tratamento farmacológico , Infecções por Ureaplasma/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...