Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830148

RESUMO

Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.

2.
Microb Drug Resist ; 28(11): 1037-1042, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36318798

RESUMO

Typing carbapenem-resistant Klebsiella pneumoniae (CR-KPN) is crucial in controlling their dissemination and solving outbreaks. In this context, we searched for an effective, faster, and cheaper alternative technique to type KPN by analyzing the fosAKP sequence. We analyzed the nucleotide sequences of chromosomal fosAKP gene in 350 KPN genomes (70 per sequence type [ST] or clonal complex [CC]). Assembly genomes were randomly downloaded from NCBI and annotated using RAST in PATRIC platform. The isolate STs were verified using multilocus sequence typing 2.0 by the Center for Genomic Epidemiology. Chromosomally encoded fosAKP was confirmed in MLplasmid, and the sequence alignments were performed in Clustal Omega. The amino acid sequences were analyzed using SNAP2 and SMART platforms. Out of the 70 genomes analyzed for each ST/CC, we observed 100% fosA sequence identity for CC258/11, ST15, ST307, and ST101. For ST16, only two fosA sequences were different from each other. We observed differences in amino acid sequences at positions 25 and 79 (ST16) and 86 (ST16, ST101). The C-terminal (amino acid 138, 139, 140) was different for each cluster. None of these polymorphisms is related to the protein active site. Moreover, L25Q (ST16) polymorphism was predicted to probably affect the protein function. We observed that chromosomal fosAKP sequences from KPN are highly conserved in ST15, ST307, ST16, ST101, and CC258/11, suggesting fosAKP sequencing as an alternative, easier, faster, and less expensive technique in identifying epidemiological STs for KPN, and discriminating them from CC258/11.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Células Clonais/metabolismo , Testes de Sensibilidade Microbiana
4.
Eur J Pharm Sci ; 146: 105268, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081832

RESUMO

Sub-inhibitory concentrations (sub-MIC) of antimicrobial agents can lead to genetic changes in bacteria, modulating the expression of genes related to bacterial stress and leading to drug resistance. Herein we describe the impact of sub-MIC of ciprofloxacin and nitrofurantoin on three uropathogenic Escherichia coli strains. Disk-diffusion assays with different antimicrobial agents were tested to detect phenotype alterations, and quantitative real-time PCR (qRT-PCR) was performed to analyze the expression of ompF and recA genes. Significant reduction on the susceptibility to ciprofloxacin and nitrofurantoin was detected on disk diffusion test. The qRT-PCR results revealed a 1.2-4.7 increase in recA expression in all E. coli studied, while the ompF expression varied. Because RecA was pointed as an important component to the development of drug resistance, molecular docking studies were performed with three experimentally known inhibitors of this enzyme. These studies aimed to understand the inhibitory binding mode of such compounds. The results confirmed the ADP/ATP binding site as a potential site of inhibitor recognition and a binding mode based on π-stacking interactions with Tyr103 and hydrogen bonds with Tyr264. These findings can be useful for guiding the search and design of new antimicrobial agents, mainly concerning the treatment of infections with resistant bacterial strains.


Assuntos
Anti-Infecciosos Urinários/farmacologia , Ciprofloxacina/farmacologia , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Escherichia coli/efeitos dos fármacos , Genes Bacterianos , Nitrofurantoína/farmacologia , Recombinases Rec A/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Anti-Infecciosos Urinários/química , Ciprofloxacina/química , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Nitrofurantoína/química , Recombinases Rec A/genética , Escherichia coli Uropatogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...