Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(48): 33264-33272, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934166

RESUMO

Area selective atomic layer deposition has the potential to significantly improve current fabrication approaches by introducing a bottom-up process in which robust and conformal thin films are selectively deposited onto patterned substrates. In this paper, we demonstrate selective deposition of dielectrics on metal/dielectric patterns by protecting metal surfaces using alkanethiol blocking layers. We examine alkanethiol self-assembled monolayers (SAMs) with two different chain lengths deposited both in vapor and in solution and show that in both systems, thiols have the ability to block surfaces against dielectric deposition. We show that thiol molecules can displace Cu oxide, opening possibilities for easier sample preparation. A vapor-deposited alkanethiol SAM is shown to be more effective than a solution-deposited SAM in blocking ALD, even after only 30 s of exposure. The vapor deposition also results in a much better thiol regeneration process and may facilitate deposition of the SAMs on porous or three-dimensional structures, allowing for the fabrication of next generation electronic devices.

2.
ACS Nano ; 10(4): 4451-8, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26950397

RESUMO

Area-selective atomic layer deposition (AS-ALD) is attracting increasing interest because of its ability to enable both continued dimensional scaling and accurate pattern placement for next-generation nanoelectronics. Here we report a strategy for depositing material onto three-dimensional (3D) nanostructures with topographic selectivity using an ALD process with the aid of an ultrathin hydrophobic surface layer. Using ion implantation of fluorocarbons (CFx), a hydrophobic interfacial layer is formed, which in turn causes significant retardation of nucleation during ALD. We demonstrate the process for Pt ALD on both blanket and 2D patterned substrates. We extend the process to 3D structures, demonstrating that this method can achieve selective anisotropic deposition, selectively inhibiting Pt deposition on deactivated horizontal regions while ensuring that only vertical surfaces are decorated during ALD. The efficacy of the approach for metal oxide ALD also shows promise, though further optimization of the implantation conditions is required. The present work advances practical applications that require area-selective coating of surfaces in a variety of 3D nanostructures according to their topographical orientation.

3.
ACS Nano ; 9(9): 8710-7, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26181140

RESUMO

Nanoscale patterning of materials is widely used in a variety of device applications. Area selective atomic layer deposition (ALD) has shown promise for deposition of patterned structures with subnanometer thickness control. However, the current process is limited in its ability to achieve good selectivity for thicker films formed at higher number of ALD cycles. In this report, we demonstrate a strategy for achieving selective film deposition via a self-correcting process on patterned Cu/SiO2 substrates. We employ the intrinsically selective adsorption of octadecylphosphonic acid self-assembled monolayers on Cu over SiO2 surfaces to selectively create a resist layer only on Cu. ALD is then performed on the patterns to deposit a dielectric film. A mild etchant is subsequently used to selectively remove any residual dielectric film deposited on the Cu surface while leaving the dielectric film on SiO2 unaffected. The selectivity achieved after this treatment, measured by compositional analysis, is found to be 10 times greater than for conventional area selective ALD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...