Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 75(4): 1049-1062, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29119317

RESUMO

Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 µM, respectively. Violacein showed a MIC of 15 µM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.


Assuntos
Bactérias/metabolismo , Quitridiomicetos/efeitos dos fármacos , Indóis/antagonistas & inibidores , Indóis/metabolismo , Prodigiosina/antagonistas & inibidores , Prodigiosina/metabolismo , Compostos Orgânicos Voláteis/antagonistas & inibidores , Compostos Orgânicos Voláteis/metabolismo , Animais , Antifúngicos/farmacologia , Anuros/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Agentes de Controle Biológico/antagonistas & inibidores , Quitridiomicetos/crescimento & desenvolvimento , Quitridiomicetos/patogenicidade , Indóis/química , Testes de Sensibilidade Microbiana , Panamá , Filogenia , Prodigiosina/química , Serratia/classificação , Serratia/isolamento & purificação , Serratia/metabolismo , Pele/microbiologia , Suíça , Simbiose , Estados Unidos , Compostos Orgânicos Voláteis/química
2.
Microb Ecol ; 74(1): 227-238, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105509

RESUMO

Both the structure and function of host-associated microbial communities are potentially impacted by environmental conditions, just as the outcomes of many free-living species interactions are context-dependent. Many amphibian populations have declined around the globe due to the fungal skin pathogen, Batrachochytrium dendrobatidis (Bd), but enivronmental conditions may influence disease dynamics. For instance, in Panamá, the most severe Bd outbreaks have occurred at high elevation sites. Some amphibian species harbor bacterial skin communities that can inhibit the growth of Bd, and therefore, there is interest in understanding whether environmental context could also alter these host-associated microbial communities in a way that might ultimately impact Bd dynamics. In a field survey in Panamá, we assessed skin bacterial communities (16S rRNA amplicon sequencing) and metabolite profiles (HPLC-UV/Vis) of Silverstoneia flotator from three high- and three low-elevation populations representing a range of environmental conditions. Across elevations, frogs had similar skin bacterial communities, although one lowland site appeared to differ. Interestingly, we found that bacterial richness decreased from west to east, coinciding with the direction of Bd spread through Panamá. Moreover, metabolite profiles suggested potential functional variation among frog populations and between elevations. While the frogs have similar bacterial community structure, the local environment might shape the metabolite profiles. Ultimately, host-associated community structure and function could be dependent on environmental conditions, which could ultimately influence host disease susceptibility across sites.


Assuntos
Anuros/microbiologia , Bactérias/metabolismo , Metaboloma , Pele/microbiologia , Animais , Quitridiomicetos/patogenicidade , Panamá , RNA Ribossômico 16S/genética
3.
Mol Ecol ; 24(7): 1628-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737297

RESUMO

The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.


Assuntos
Antibiose , Anuros/microbiologia , Bactérias/classificação , Quitridiomicetos/crescimento & desenvolvimento , Filogenia , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Dados de Sequência Molecular , Panamá , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA