Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 9(1): coab007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833867

RESUMO

Changes in species composition and biomass of Arctic benthic communities are predicted to occur in response to environmental changes associated with oceanic warming and sea-ice loss. Such changes will likely impact ecosystem function, including flows of energy and organic material through the Arctic marine food web. Oxygen consumption rates can be used to quantify differences in metabolic demand among species and estimate the effects of shifting community structure on benthic carbon consumption. Closed-system respirometry using non-invasive oxygen optodes was conducted onboard the R/V Sikuliaq in June 2017 and 2018 on six dominant species of benthic macrofauna from the northern Bering and southern Chukchi Sea shelves, including five bivalve species (Macoma sp., Serripes groenlandicus, Astarte sp., Hiatella arctica and Nuculana pernula) and one amphipod species (Ampelisca macrocephala). Results revealed species-specific respiration rates with high metabolic demand for S. groenlandicus and A. macrocephala compared to that of the other species. For a hypothetical 0.1-g ash-free dry mass individual, the standard metabolic rate of S. groenlandicus would be 4.3 times higher than that of Astarte sp. Overall, carbon demand ranged from 8 to 475 µg C individual-1 day-1 for the species and sizes of individuals measured. The allometric scaling of respiration rate with biomass also varied among species. The scaling coefficient was similar for H. arctica, A. macrocephala and Astarte sp., while it was high for S. groenlandicus and low for Macoma sp. These results suggest that observed shifts in spatial distribution of the dominant macrofaunal taxa across this region will impact carbon demand of the benthic community. Hence, ecosystem models seeking to incorporate benthic system functionality may need to differentiate between communities that exhibit different oxygen demands.

2.
Front Microbiol ; 12: 581124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584606

RESUMO

The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...