Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 16(10): 1590-1611, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37674314

RESUMO

Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow.


Assuntos
Mudança Climática , Fabaceae , Abastecimento de Alimentos , Melhoramento Vegetal , Produtos Agrícolas/genética , Segurança Alimentar
2.
Theor Appl Genet ; 128(9): 1765-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26024715

RESUMO

KEY MESSAGE: The potential for exploiting heterosis for sorghum hybrid production in Ethiopia with improved local adaptation and farmers preferences has been investigated and populations suitable for initial hybrid development have been identified. Hybrids in sorghum have demonstrated increased productivity and stability of performance in the developed world. In Ethiopia, the uptake of hybrid sorghum has been limited to date, primarily due to poor adaptation and absence of farmer's preferred traits in existing hybrids. This study aimed to identify complementary parental pools to develop locally adapted hybrids, through an analysis of whole genome variability of 184 locally adapted genotypes and introduced hybrid parents (R and B). Genetic variability was assessed using genetic distance, model-based STRUCTURE analysis and pair-wise comparison of groups. We observed a high degree of genetic similarity between the Ethiopian improved inbred genotypes and a subset of landraces adapted to lowland agro-ecology with the introduced R lines. This coupled with the genetic differentiation from existing B lines, indicated that these locally adapted genotype groups are expected to have similar patterns of heterotic expression as observed between introduced R and B line pools. Additionally, the hybrids derived from these locally adapted genotypes will have the benefit of containing farmers preferred traits. The groups most divergent from introduced B lines were the Ethiopian landraces adapted to highland and intermediate agro-ecologies and a subset of lowland-adapted genotypes, indicating the potential for increased heterotic response of their hybrids. However, these groups were also differentiated from the R lines, and hence are different from the existing complementary heterotic pools. This suggests that although these groups could provide highly divergent parental pools, further research is required to investigate the extent of heterosis and their hybrid performance.


Assuntos
Vigor Híbrido , Hibridização Genética , Melhoramento Vegetal , Sorghum/genética , Adaptação Biológica/genética , DNA de Plantas/genética , Etiópia , Genética Populacional , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...