Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
mSphere ; 8(5): e0026323, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37768053

RESUMO

Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.


Assuntos
Doenças Parasitárias , Toxoplasma , Recém-Nascido , Humanos , Animais , Camundongos , Toxoplasma/metabolismo , NF-kappa B/metabolismo , Proteínas de Protozoários/metabolismo , Parasitemia , Infecção Persistente , Células Cultivadas , Imunidade Inata , Interleucina-12/metabolismo
2.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398161

RESUMO

Toxoplasma gondii 's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both the acute and chronic infection. Murine macrophages infected with Δ gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro , which was confirmed with reduced IL-12 and interferon gamma (IFN-γ) in vivo . This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the NF-κB complex. While GRA15 similarly regulates NF-κB, infection with Δ gra83/ Δ gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labelling experiments to reveal candidate GRA83 interacting T. gondii derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit parasite burden. Importance: Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma' s ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection are important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.

3.
mSphere ; 7(1): e0089621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019667

RESUMO

The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. While the molecular tools are highly developed for the apicomplexan Toxoplasma gondii, the closely related parasite Neospora caninum lacks efficient tools for genetic manipulation. To enable efficient homologous recombination in N. caninum, we targeted the Ku heterodimer DNA repair mechanism in the genomic reference strain, Nc-Liverpool (NcLiv), and show that deletion of Ku80 results in a destabilization and loss of its partner Ku70. Disruption of Ku80 generated parasites in which genes are efficiently epitope tagged and only short homology regions are required for gene knockouts. We used this improved strain to target novel nonessential genes encoding dense granule proteins that are unique to N. caninum or conserved in T. gondii. To expand the utility of this strain for essential genes, we developed the auxin-inducible degron system for N. caninum using parasite-specific promoters. As a proof of concept, we knocked down a novel nuclear factor in both N. caninum and T. gondii and showed that it is essential for survival of both parasites. Together, these efficient knockout and knockdown technologies will enable the field to unravel specific gene functions in N. caninum, which is likely to aid in the identification of targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. IMPORTANCE Neospora caninum is a parasite with veterinary relevance, inducing severe disease in dogs and reproductive disorders in ruminants, especially cattle, leading to major losses. The close phylogenetic relationship to Toxoplasma gondii and the lack of pathogenicity in humans drives an interest of the scientific community toward using N. caninum as a model to study the pathogenicity of T. gondii. To enable this comparison, it is important to develop efficient molecular tools for N. caninum, to gain accuracy and save time in genetic manipulation protocols. Here, we have developed base strains and protocols using the genomic reference strain of N. caninum to enable efficient knockout and knockdown assays in this model. We demonstrate that these tools are effective in targeting known and previously unexplored genes. Thus, these tools will greatly improve the study of this protozoan, as well as enhance its ability to serve as a model to understand other apicomplexan parasites.


Assuntos
Neospora , Toxoplasma , Animais , Bovinos , Cães , Técnicas de Inativação de Genes , Neospora/genética , Filogenia , Reprodução , Toxoplasma/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32523898

RESUMO

Neospora caninum poses as a considerable threat to animal health and generates significant economic impact in livestock production worldwide. Here, we have investigated the mechanism that underlies the participation of the inflammasome complex and Reactive Oxygen Species (ROS) in the regulation of immune responses during N. caninum infection. For that purpose, we used in vitro (bone marrow derived macrophages) and in vivo mouse models of infection. Our results show that NLRP3 and NLRC4 receptors, alongside with ASC and Caspase-1, are required for proper activation of the inflammasome during N. caninum infection. As expected, the engagement of these pathways is crucial for IL-1α, IL-1ß, and IL-18 production, as well as the induction of pyroptosis. Our results also show that N. caninum induces ROS production dependent of the inflammasome assembly, which in its turn also depends on MyD88/NF-κB-induced ROS to maintain its activation and, ultimately, lead to restriction of parasite replication.


Assuntos
Inflamassomos , Neospora , Animais , Caspase 1 , Interleucina-1beta , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio
5.
Front Microbiol ; 11: 623947, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552033

RESUMO

The combination of sulfadiazine and pyrimethamine plus folinic acid is the conventional treatment for congenital toxoplasmosis. However, this classical treatment presents teratogenic effects and bone marrow suppression. In this sense, new therapeutic strategies are necessary to reduce these effects and improve the control of infection. In this context, biogenic silver nanoparticles (AgNp-Bio) appear as a promising alternative since they have antimicrobial, antiviral, and antiparasitic activity. The purpose of this study to investigate the action of AgNp-Bio in BeWo cells, HTR-8/SVneo cells and villous explants and its effects against Toxoplasma gondii infection. Both cells and villous explants were treated with different concentrations of AgNp-Bio or combination of sulfadiazine + pyrimethamine (SDZ + PYZ) in order to verify the viability. After, cells and villi were infected and treated with AgNp-Bio or SDZ + PYZ in different concentrations to ascertain the parasite proliferation and cytokine production profile. AgNp-Bio treatment did not reduce the cell viability and villous explants. Significant reduction was observed in parasite replication in both cells and villous explants treated with silver nanoparticles and classical treatment. The AgNp-Bio treatment increased of IL-4 and IL-10 by BeWo cells, while HTR8/SVneo cells produced macrophage migration inhibitory factor (MIF) and IL-4. In the presence of T. gondii, the treatment induced high levels of MIF production by BeWo cells and IL-6 by HTR8SV/neo. In villous explants, the AgNp-Bio treatment downregulated production of IL-4, IL-6, and IL-8 after infection. In conclusion, AgNp-Bio can decrease T. gondii infection in trophoblast cells and villous explants. Therefore, this treatment demonstrated the ability to reduce the T. gondii proliferation with induction of inflammatory mediators in the cells and independent of mediators in chorionic villus which we consider the use of AgNp-Bio promising in the treatment of toxoplasmosis in BeWo and HTR8/SVneo cell models and in chorionic villi.

6.
J Pharm Biomed Anal ; 175: 112778, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31352171

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite responsible for toxoplasmosis, which affects humans and animals. Serologic detection of anti-T. gondii immunoglobulins plays a crucial role in the clinical diagnosis of toxoplasmosis. In this work, a novel electrochemical immunosensor for detecting anti-T. gondii immunoglobulins is reported, based on immobilization of an in silico predicted peptide (PepB3), obtained from membrane protein of T. gondii, on the graphite electrode modified with poly(3-hydroxybenzoic acid). Indirect ELISA confirmed infection and binding specificity of peptide PepB3. Molecular modelling and simulations show this peptide binds to the T. gondii human Fab antibody in the surface antigen 1 (SAG1) binding site, remaining a stable complex during the molecular dynamic simulations, especially by hydrogen bonds and hydrophobic interactions. This electrochemical immunosensor was able to discriminate different periods of infection, using infected mouse serum samples, showing selectivity and discriminating infected and uninfected mouse serum.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunoglobulinas/imunologia , Peptídeos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Camundongos , Proteínas de Protozoários/imunologia , Sensibilidade e Especificidade
8.
9.
Front Microbiol ; 9: 906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867817

RESUMO

Migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays important roles in physiology, pathology, immunology and parasitology, including the control of infection by protozoa parasites such as Toxoplasma gondii. As the MIF function in congenital toxoplasmosis is not fully elucidated yet, the present study brings new insights for T. gondii infection in the absence of MIF based on pregnant C57BL/6MIF-/- mouse models. Pregnant C57BL/6MIF-/- and C57BL/6WT mice were infected with 05 cysts of T. gondii (ME49 strain) on the first day of pregnancy (dop) and were euthanized at 8 dop. Non-pregnant and non-infected females were used as control. Our results demonstrated that MIF-/- mice have more accentuated change in body weight and succumbed to infection first than their WT counterparts. Otherwise, pregnancy outcome was less destructive in MIF-/- mice compared to WT ones, and the former had an increase in the mast cell recruitment and IDO expression and consequently presented less inflammatory cytokine production. Also, MIF receptor (CD74) was upregulated in MIF-/- mice, indicating that a compensatory mechanism may be required in this model of study. The global absence of MIF was associated with attenuation of pathology in congenital toxoplasmosis, but resulted in female death probably because of uncontrolled infection. Altogether, ours results demonstrated that part of the immune response that protects a pregnant female from T. gondii infection, favors fetal damage.

10.
J Immunol ; 199(6): 2055-2068, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28784846

RESUMO

Protozoan parasites of the genus Leishmania are the causative agents of Leishmaniasis, a disease that can be lethal and affects 12 million people worldwide. Leishmania replicates intracellularly in macrophages, a process that is essential for disease progression. Although the production of reactive oxygen species (ROS) accounts for restriction of parasite replication, Leishmania is known to induce ROS upon macrophage infection. We have recently demonstrated NLRP3 inflammasome activation in infected macrophages, a process that is important for the outcome of infection. However, the molecular mechanisms responsible for inflammasome activation are unknown. In this article, we demonstrate that ROS induced via NADPH oxidase during the early stages of L. amazonensis infection is critical for inflammasome activation in macrophages. We identified that ROS production during L. amazonensis infection occurs upon engagement of Dectin-1, a C-type lectin receptor that signals via spleen tyrosine kinase (Syk) to induce ROS. Accordingly, inflammasome activation in response to L. amazonensis is impaired by inhibitors of NADPH oxidase, Syk, focal adhesion kinase, and proline-rich tyrosine kinase 2, and in the absence of Dectin-1. Experiments performed with Clec7a-/- mice support the critical role of Dectin-1 for inflammasome activation, restriction of parasite replication in macrophages, and mouse resistance to L. amazonensis infection in vivo. Thus, we reported that activation of the Dectin-1/Syk/ROS/NLRP3 pathway during L. amazonensis phagocytosis is important for macrophage restriction of the parasite replication and effectively accounts for host resistance to Leishmania infection.


Assuntos
DNA de Protozoário/genética , Inflamassomos/metabolismo , Lectinas Tipo C/metabolismo , Leishmania/fisiologia , Leishmaniose/imunologia , Macrófagos/imunologia , NADPH Oxidases/metabolismo , Animais , Células Cultivadas , Replicação do DNA , Feminino , Lectinas Tipo C/genética , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk/metabolismo
11.
J Pharm Biomed Anal ; 145: 838-844, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28826142

RESUMO

This work describes an approach for the selection and detection of specific DNA probes related to Toxoplasma gondii, a protozoan parasite responsible for toxoplasmosis. The detection system was developed on graphite carbon electrode modified with poly(3-hydroxybenzoic acid) sensitized with ToxG1 probe. The hybridization of the specific genomic DNA related to T. gondii showed good response by direct detection of guanine residue oxidation using differential pulse voltammetry (DPV). The biosensor was able to distinguish both the complementary and non-complementary targets and detect up to 100ngµL-1 of the T. gondii genomic DNA. The hybridization (ToxG1: T. gondii genomic DNA) was confirmed by optical measurement. Optical assays using gold nanoparticles:ToxG1 probe showed a significant change in the absorbance peak in the presence of the T. gondii genomic DNA according to the electrochemical results. This novel biosensor shows potential as electrochemical transducer and was successfully applied in the biological sample.


Assuntos
Toxoplasma , DNA , Genômica , Hidroxibenzoatos , Toxoplasmose
12.
Sci Rep ; 7(1): 3768, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630403

RESUMO

The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. We have established a system specifically designed for Neospora caninum, and used this system as a heterologous platform for the expression of foreign genes. Plasmid constructs containing fluorescent proteins or targeted genes of Toxoplasma gondii, driven by N. caninum promoters, have yielded robust expression and correct trafficking of target gene products as assessed by immunofluorescence assays and Western blot analyses. Using this approach, we here demonstrated that N. caninum expressing T. gondii's GRA15 and ROP16 kinase are biologically active and induced immunological phenotypes consistent with T. gondii strains. N. caninum expressing TgGRA15 differentially disturbed the NF-κB pathway, inducing an increased IL-12 production. On the other hand, N. caninum expressing TgROP16 induced host STAT3 phosphorylation and consequent reduction of IL-12 synthesis. These results indicate that heterologous gene expression in N. caninum is a useful tool for the study of specific gene functions and may allow the identification of antigenic targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. Additionally, these observations may prove to be useful for the development of vaccine protocols to control toxoplasmosis and/or neosporosis.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28487845

RESUMO

Eutirucallin is a lectin isolated from the latex of Euphorbia tirucalli, a plant known for its medical properties. The present study explores various characteristics of Eutirucallin including stability, cytotoxicity against tumor cells, antimicrobial and antiparasitic activities. Eutirucallin was stable from 2 to 40 days at 4°C, maintained hemagglutinating activity within a restricted range, and showed optimal activity at pH 7.0-8.0. Eutirucallin presented antiproliferative activity for HeLa, PC3, MDA-MB-231, and MCF-7 tumor cells but was not cytotoxic for non-tumorigenic cells such as macrophages and fibroblasts. Eutirucallin inhibited the Ehrlich ascites carcinoma in vivo and it was also observed that Eutirucallin inhibited 62.5% of Escherichia coli growth. Also, Eutirucallin showed to be effective when tested directly against Toxoplasma gondii infection in vitro. Therefore, this study sheds perspectives for pharmacological applications of Eutirucallin.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Animais , Anti-Infecciosos/química , Antineoplásicos/química , Antiparasitários/farmacologia , Brasil , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Euphorbia/química , Fibroblastos/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Hemaglutinação , Humanos , Concentração de Íons de Hidrogênio , Lectinas/farmacologia , Células MCF-7 , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico
14.
Artigo em Inglês | MEDLINE | ID: mdl-28487847

RESUMO

Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70). Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for vaccine development against toxoplasmosis.


Assuntos
Encéfalo/parasitologia , Cistos/parasitologia , Óxido Nítrico/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasmose/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia , Adjuvantes Imunológicos , Compostos de Alúmen/farmacologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/farmacologia , Linfócitos B/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cistos/patologia , Citocinas/sangue , Feminino , Fibroblastos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/farmacologia , Imunoglobulina G/sangue , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II , Fenótipo , Células RAW 264.7 , Baço , Toxoplasmose/tratamento farmacológico , Vacinação
15.
Artigo em Inglês | MEDLINE | ID: mdl-27933277

RESUMO

Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii. The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model.


Assuntos
Adjuvantes Imunológicos/farmacologia , Artocarpus/química , Lectinas/farmacologia , Extratos Vegetais/farmacologia , Toxoplasma/imunologia , Toxoplasmose/tratamento farmacológico , Toxoplasmose/imunologia , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/imunologia , Encéfalo/parasitologia , Citocinas/sangue , Citocinas/efeitos dos fármacos , Testes Imunológicos de Citotoxicidade , DNA Bacteriano , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Feminino , Lectinas/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/análise , Carga Parasitária , Vacinas Protozoárias/imunologia , Sulfadiazina/farmacologia , Análise de Sobrevida , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade
16.
Front Plant Sci ; 7: 1430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721819

RESUMO

Artemisia annua is used as a source of artemisinin, a potent therapeutic agent used for the treatment of infectious diseases, chiefly malaria. However, the low concentration (from 0.01 to 1.4% of dried leaf matter) of artemisinin in the plant obtained with the traditional cropping system makes it a relatively expensive drug, especially in developing countries. Considering that artemisinin and silicon (Si) are both stored in A. annua glandular trichomes, and that Si accumulation has never been investigated, this study aimed to look into Si effects on A. annua trichome artemisinin concentration, and whether leaf infusion from Si-treated A. annua plants is able to control Toxoplasma gondii growth. T. gondii is the etiologic agent of toxoplasmosis, a zoonotic parasitic disease whose traditional treatment shows significant side effects. The experimental design consisted of A. annua seedlings randomly planted in soil treated with different doses of calcium/magnesium silicate (0, 200, 400, 800, and 1600 kg ha-1). Analysis of foliar macronutrients showed significant increases of nitrogen content only at the highest dose of silicate. Foliar micronutrients, Si concentrations, and plant height were not affected by any of the silicate doses. However, the dose of 400 kg ha-1 of silicate increased the trichome size, which in turn raised artemisinin concentration in leaves and the infusion. In contrast, the 800 and 1600 kg ha-1 doses dramatically decreased artemisinin concentration. HeLa cell treatment with the infusion of A. annua grown in soil treated with 400 kg ha-1 of silicate decreased parasite proliferation in a dose-dependent manner when the treatment was carried out after or along with T. gondii infection. However, this effect was similar to A. annua grown in soil without silicate treatment. Thus, it can be concluded that, even though Si applied to the soil at 400 kg ha-1 has a positive effect on the A. annua glandular trichome size and the artemisinin concentration, this outcome cannot be directly associated with the efficiency of A. annua infusion on T. gondii growth, suggesting that other components from A. annua leaves could be acting in synergy with artemisinin.

17.
Front Microbiol ; 7: 1456, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27679624

RESUMO

Due to the high prevalence and economic impact of neosporosis, the development of safe and effective vaccines and therapies against this parasite has been a priority in the field and is crucial to limit horizontal and vertical transmission in natural hosts. Limited data is available regarding factors that regulate the immune response against this parasite and such knowledge is essential in order to understand Neospora caninum induced pathogenesis. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes, including growth, differentiation, apoptosis, and immune-mediated responses. In that sense, our goal was to understand the role of MAPKs during the infection by N. caninum. We found that p38 phosphorylation was quickly triggered in macrophages stimulated by live tachyzoites and antigen extracts, while its chemical inhibition resulted in upregulation of IL-12p40 production and augmented B7/MHC expression. In vivo blockade of p38 resulted in an amplified production of cytokines, which preceded a reduction in latent parasite burden and enhanced survival against the infection. Additionally, the experiments indicate that the p38 activation is induced by a mechanism that depends on GPCR, PI3K and AKT signaling pathways, and that the phenomena here observed is distinct that those induced by Toxoplasma gondii's GRA24 protein. Altogether, these results showed that N. caninum manipulates p38 phosphorylation in its favor, in order to downregulate the host's innate immune responses. Additionally, those results infer that active interference in this signaling pathway may be useful for the development of a new therapeutic strategy against neosporosis.

18.
Sci Rep ; 6: 29289, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377650

RESUMO

Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Innate immune responses are crucial for host resistance against the infection, however the molecules involved in parasite recognition are still poorly understood. Nod2 is a cytosolic receptor that recognizes several pathogens and its role during N. caninum infection has not yet been described. In that sense, we evaluated the role of Nod2 in host response against this parasite. We found that infection of macrophages induced increased expression of Nod2, which colocalized with the parasites' vacuoles. Nod2-deficient macrophages showed an impaired induction of pro-inflammatory cytokines, increased production of modulatory molecules, and failure to restrict parasite replication. In vivo, Nod2-knockout mice showed a reduction of MAPK phosphorylation and proinflammatory cytokines, followed by decreased inflammation in target organs and increment in parasite burden. Surprisingly, these mice were partially resistant to lethal doses of tachyzoites. In addition, these phenomena were not observed in Rip2-/- mice. In conclusion, our study indicates that Nod2-dependent responses account for N. caninum elimination. On the other hand, the inflammatory milieu induced by this innate receptor provoked pathogenesis and death in severe experimental neosporosis.


Assuntos
Coccidiose/patologia , Interações Hospedeiro-Patógeno , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/parasitologia , Neospora/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Artigo em Inglês | MEDLINE | ID: mdl-27313992

RESUMO

Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Imunidade Humoral , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estruturais , Peptídeos/síntese química , Peptídeos/genética , Conformação Proteica , Vacinas Protozoárias/síntese química , Vacinas Protozoárias/genética , Taxa de Sobrevida , Toxoplasma/química , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Resultado do Tratamento
20.
PLoS One ; 11(3): e0152622, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27027302

RESUMO

Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection.


Assuntos
Linfócitos B/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Linfócitos B/parasitologia , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide/antagonistas & inibidores , Masculino , Camundongos , Células Mieloides/parasitologia , Gravidez , Linfócitos T Reguladores/parasitologia , Toxoplasmose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...