Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486719

RESUMO

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in COVID-19 convalescents combining serological, cellular and monoclonal antibody explorations, revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell, demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474244

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) that escape pre-existing antibody neutralizing responses increases the need for vaccines that target conserved epitopes and induce cross-reactive B- and T-cell responses. We used a computational approach and sequence alignment analysis to design a new-generation subunit vaccine targeting conserved sarbecovirus B- and T-cell epitopes from Spike (S) and Nucleocapsid (N) to antigen-presenting cells expressing CD40 (CD40.CoV2). We demonstrate the potency of CD40.CoV2 to elicit high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with improved viral control and survival after challenge. In addition, we demonstrate the potency of CD40.CoV2 in vitro to recall human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. Overall, these findings provide a framework for a pan-sarbecovirus vaccine.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20246934

RESUMO

COVID-19 SARS-CoV-2 infection exhibits wide inter-individual clinical variability, from silent infection to severe disease and death. The identification of high-risk patients is a continuing challenge in routine care. We aimed to identify factors that influence clinical worsening. We analyzed 52 cell populations, 71 analytes, and RNA-seq gene expression in the blood of severe patients from the French COVID cohort upon hospitalization (n = 61). COVID-19 patients showed severe abnormalities of 27 cell populations relative to healthy donors (HDs). Forty-two cytokines, neutrophil chemo-attractants, and inflammatory components were elevated in COVID-19 patients. Supervised gene expression analyses showed differential expression of genes for neutrophil activation, interferon signaling, T- and B-cell receptors, EIF2 signaling, and ICOS-ICOSL pathways in COVID-19 patients. Unsupervised analysis confirmed the prominent role of neutrophil activation, with a high abundance of CD177, a specific neutrophil activation marker. CD177 was the most highly differentially-expressed gene contributing to the clustering of severe patients and its abundance correlated with CD177 protein serum levels. CD177 levels were higher in COVID-19 patients from both the French and "confirmatory" Swiss cohort (n = 203) than in HDs (P< 0.01) and in ICU than non-ICU patients (P< 0.001), correlating with the time to symptoms onset (P = 0.002). Longitudinal measurements showed sustained levels of serum CD177 to discriminate between patients with the worst prognosis, leading to death, and those who recovered (P = 0.01). These results highlight neutrophil activation as a hallmark of severe disease and CD177 assessment as a reliable prognostic marker for routine care.

4.
Retrovirology ; 6: 96, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19843348

RESUMO

Retroviruses, hepadnaviruses, and some other retroelements are vulnerable to editing by single stranded DNA cytidine deaminases. Of the eleven human genes encoding such enzymes, eight have demonstrable enzymatic activity. Six of seven human APOBEC3 are able to hyperedit HBV DNA, frequently on both strands. Although human APOBEC1 (hA1) is not generally expressed in normal liver, hA1 can edit single stranded DNA in a variety of experimental assays. The possibility of ectopic expression of hA1 in vivo cannot be ruled out and interestingly, transgenic mice with A1 expressed under a liver specific promoter develop hepatocellular carcinoma. The impact of hA1 on HBV in tissue culture is varied with reports noting either reduced DNA synthesis or not, with cytidine deamination taking a low profile. We sought to examine the hA1 editing activity on replicating HBV. Using highly sensitive 3DPCR it was possible to show that hA1 edits the HBV minus DNA strand as efficiently as hA3G, considered the reference deaminase for HIV and HBV. The dinucleotide specificity of editing was unique among human cytidine deaminases providing a hallmark of use in a posteriori analyses of in vivo edited genomes. Analysis of sequences derived from the serum of two chronic carriers, indicated that hA1 explained only a small fraction of edited HBV genomes. By contrast, several human APOBEC3 deaminases were active including hA3G.


Assuntos
Citidina Desaminase/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Vírus da Hepatite B/genética , Desaminase APOBEC-1 , Animais , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Vírus da Hepatite B/isolamento & purificação , Humanos , Camundongos
5.
Virus Res ; 146(1-2): 107-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19766153

RESUMO

The hepatitis B virus (HBV) surface small antigen (HBsAg) self-assembles into virus-like particles (VLPs). HBsAg-based VLPs constitute a powerful vector for heterologous immunogenic peptides to develop a safe vaccine delivery system. HBV and the human immunodeficiency virus type 1 (HIV-1) are frequently associated in infection. An HIV-1 class I polyepitope was designed for an HIV-1/HBV vaccine prototype based on HBsAg VLPs. Invariable peptides from the original HIV-1 polyepitope were here permutated to study the influence of epitope order on HIV-1/HBV VLP immunogenicity. Anti-HIV-1 cellular responses were statistically comparable among polyepitope variants. Nevertheless, delivered HIV-1 polyepitopes impacted anti-HBsAg carrier immunogenicity in a polyepitope-specific manner. For a given set of epitopes, the choice of epitope order in polyepitopes is strategic to control immune responses towards HBsAg VLPs used as carrier of foreign immunogenic peptides.


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas contra a AIDS/genética , Sequência de Aminoácidos , Animais , Feminino , Fatores de Transcrição Forkhead/análise , Anticorpos Anti-Hepatite B/sangue , Vacinas contra Hepatite B/genética , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Interferon gama/imunologia , Subpopulações de Linfócitos/imunologia , Camundongos , Dados de Sequência Molecular , Linfócitos T/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...