Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 9(15): 13676-13684, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28224792

RESUMO

Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 µm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 µm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.

3.
Food Chem ; 221: 751-759, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979268

RESUMO

An amperometric non-enzymatic glucose sensor was developed based on nitrogen-doped graphene with dispersed copper nanoparticles (Cu-NGr). The sensing element was tested in conjunction with a modified glassy carbon electrode for glucose detection. The Cu-NGr composite was prepared by one pot synthesis from a mixture of graphene oxide, copper nitrate and uric acid, followed by thermal annealing at 900°C for 1h. Detailed characterizations showed homogeneous copper nanoparticle dispersion and the presence of significant proportion of graphitic nitrogen. The developed electrode presented high electrocatalytic activity towards glucose through synergetic effect of copper nanoparticles and nitrogen-doped graphene. Amperometric analysis confirmed high glucose sensitivity and ultra-low detection of 10nM glucose over a linear range. The sensor was tested for direct application to detect glucose in food samples for which the sensor displayed high selectivity with excellent reproducibility and recovery in complex food materials.


Assuntos
Técnicas Biossensoriais/métodos , Cobre/química , Análise de Alimentos/métodos , Glucose/análise , Grafite/química , Nanocompostos/química , Técnicas Eletroquímicas
4.
Chem Asian J ; 12(3): 283-288, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27943602

RESUMO

The capture and storage of CO2 have been suggested as an effective strategy to reduce the global emissions of greenhouse gases. Hence, in recent years, many studies have been carried out to develop highly efficient materials for capturing CO2 . Until today, different types of porous materials, such as zeolites, porous carbons, N/B-doped porous carbons or metal-organic frameworks (MOFs), have been studied for CO2 capture. Herein, the CO2 capture performance of new hybrid materials, graphene-organic frameworks (GOFs) is described. The GOFs were synthesized under mild conditions through a solvothermal process using graphene oxide (GO) as a starting material and benzene 1,4-diboronic acid as an organic linker. Interestingly, the obtained GOF shows a high surface area (506 m2 g-1 ) which is around 11 times higher than that of GO (46 m2 g-1 ), indicating that the organic modification on the GO surface is an effective way of preparing a porous structure using GO. Our synthetic approach is quite simple, facile, and fast, compared with many other approaches reported previously. The synthesized GOF exhibits a very large CO2 capacity of 4.95 mmol g-1 at 298 K (1 bar), which is higher those of other porous materials or carbon-based materials, along with an excellent CO2 /N2 selectivity of 48.8.

5.
Sci Rep ; 6: 37909, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910868

RESUMO

The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.


Assuntos
Linhagem da Célula , Forma Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Adipócitos/citologia , Materiais Biocompatíveis , Adesão Celular , Contagem de Células , Diferenciação Celular , Elasticidade , Humanos , Desenvolvimento Muscular , Osteogênese , Imagem com Lapso de Tempo
6.
ACS Appl Mater Interfaces ; 8(3): 2078-87, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26725830

RESUMO

A novel flexible three-dimensional (3D) architecture of nitrogen and sulfur codoped graphene has been successfully synthesized via thermal treatment of a liquid crystalline graphene oxide-doping agent composition, followed by a soft self-assembly approach. The high temperature process turns the layer-by-layer assembly into a high surface area macro- and nanoporous free-standing material with different atomic configurations of graphene. The interconnected 3D network exhibits excellent charge capacitive performance of 305 F g(-1) (at 100 mV s(-1)), an unprecedented volumetric capacitance of 188 F cm(-3) (at 1 A g(-1)), and outstanding energy density of 28.44 Wh kg(-1) as well as cycle life of 10 000 cycles as a free-standing electrode for an aqueous electrolyte, symmetric supercapacitor device. Moreover, the resulting nitrogen/sulfur doped graphene architecture shows good electrocatalytic performance, long durability, and high selectivity when they are used as metal-free catalyst for the oxygen reduction reaction. This study demonstrates an efficient approach for the development of multifunctional as well as flexible 3D architectures for a series of heteroatom-doped graphene frameworks for modern energy storage as well as energy source applications.

7.
Sci Rep ; 6: 19491, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26775647

RESUMO

Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D' peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D' peak by using its overtone the 2D'. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D' peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity.

8.
ChemSusChem ; 8(23): 4040-8, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26564337

RESUMO

Doping of graphene has emerged as a key strategy to improve the electrocatalytic performance of the oxygen reduction reaction (ORR). Activated graphene co-doped with iodine and nitrogen atoms (NIG) was developed in this work using a facile scalable approach. The onset potential, current density, and four-electron reduction pathway of the newly developed catalyst were significantly improved. The charge-transfer resistance of co-doped NIG was found to be much lower than nitrogen-doped graphene (NG); furthermore, the stability of NIG and its resistance to methanol crossover were also improved. The synergistically enhanced ORR performance of NIG was found to be a result of a high strain and size advantage of the larger iodine atom clusters (compared to nitrogen), which facilitate the simultaneous enrichment of anode electrons and O2 and H2 O molecule transport at catalytic sites, inducing four-electron transfer in a single step. These results are promising for application in alkaline fuel cells.


Assuntos
Grafite/química , Oxigênio/química , Compostos de Anilina/química , Catálise , Fontes de Energia Elétrica , Eletroquímica , Iodo/química , Modelos Moleculares , Conformação Molecular , Nanopartículas/química , Nitrogênio/química , Oxirredução , Temperatura
9.
Sci Rep ; 5: 14946, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26459866

RESUMO

Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young's modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m(-3). The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile.

10.
Nanoscale ; 6(20): 11988-94, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25178096

RESUMO

Graphene quantum dots (GQDs) with their edge-bound nanometer-size present distinctive properties owing to quantum confinement and edge effects. We report a facile ultrasonic approach with chemical activation using KOH to prepare activated GQDs or aGQDs enriched with both free and bound edges. Compared to GQDs, the aGQDs we synthesized had enhanced BET surface area by a factor of about six, the photoluminescence intensity by about four and half times and electro-capacitance by a factor of about two. Unlike their non-activated counterparts, the aGQDs having enhanced edge states emit enhanced intense blue luminescence and exhibit electrochemical double layer capacitance greater than that of graphene, activated or not. Apart from their use as part of electrodes in a supercapacitor, the superior luminescence of aGQDs holds potential for use in biomedical imaging and related optoelectronic applications.

11.
ACS Nano ; 8(3): 2456-66, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24517282

RESUMO

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

12.
ACS Appl Mater Interfaces ; 6(4): 2910-6, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24495019

RESUMO

The reaction of nitric oxide (NO) and carbonaceous materials generates nitrogen functionalities on and in graphitic carbons and oxidizes some of the carbon. Here, we have exploited these phenomena to provide a novel route to surface-functionalized multiwalled carbon nanotubes (MWCNTs). We investigated the impacts of NO on the physical and chemical properties of industrially synthesized multiwalled carbon nanotubes to find a facile treatment that increased the specific surface area (SBET) of the MWCNTs by ∼20%, with only a minimal effect on their degree of graphitization. The technique caused less material loss (∼12 wt %) than traditional gas-based activation techniques and grafted some nitrogen functional groups (1.1 at. %) on the MWCNTs. Moreover, we found that Ni nanoparticles deposited on NO-treated MWCNTs had a crystallite size of dNi = 13.1 nm, similar to those deposited on acid-treated MWCNTs (dNi = 14.2 nm), and clearly much smaller than those deposited under the same conditions on untreated MWCNTs (dNi = 18.3 nm).

13.
Chem Commun (Camb) ; 49(94): 11068-70, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24141877

RESUMO

Herein, boronic acid is incorporated into a graphene oxide (GO) structure in order to synthesise a graphene organic framework (GOF) with enhanced electrochemical performance. The results obtained indicate that the GOF favours a 4e(-) reduction pathway in the oxygen reduction reaction (ORR).

14.
J Colloid Interface Sci ; 410: 43-51, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24034217

RESUMO

Aqueous phase exfoliation was developed for producing high-yield graphene nanosheets from expanded graphite (EG). The process included ultrasonication with sodium dodecyl sulfate (SDS) emulsion in aqueous phase. The high throughput exfoliation process was characterized by UV-vis spectroscopy, transmission electron microscopy (TEM) and electrical impedance spectroscopy (EIS). Controlled sonication experiments revealed that optimum exfoliation corresponds to maxima in UV-vis spectra. TEM results showed that the exfoliated graphene comprised nanoflakes having ≤5 layers (~60%) and ≤10 layers for 90% of the product. The potential use of this highly dispersed graphene was demonstrated by one-pot synthesis of graphene/polymer composite via in situ emulsion polymerization with styrene. The integrated role of SDS included adsorption and exfoliation of graphite, dispersion of graphene produced and assisting with micelle formation in emulsion. The high surface area graphene nanosheets as dispersed phase in polymeric nanocomposites showed significant improvement in thermal stability and electrical conductivity.

15.
ACS Appl Mater Interfaces ; 5(16): 7676-81, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23790146

RESUMO

Herein, we report a solid-state reduction process (in contrast to solution-based approach) by using an environmentally friendly reductant, such as vitamin C (denoted VC), to be directly employed to solid-state graphene oxide (GO) templates to give the highly active rGO architecture with a sheet resistance of as low as 10 Ω sq(-1). In addition, predesigned rGO patterns/tracks with tunable resistivity can be directly "written" on a preprepared solid GO film via the inkjet-printing technique using VC/H2O as the printing-ink. This advanced reduction process allows foreign active materials to be preincorporated into the GO matrix to form quality active composite architectures.


Assuntos
Ácido Ascórbico/química , Grafite/química , Óxidos/química , Impressão/métodos , Água/química
16.
ChemSusChem ; 6(6): 1006-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616477

RESUMO

A series of Pt catalysts supported on Al2O3 that was doped with different amounts of CeO2 was developed, characterized, and tested in the aqueous-phase reforming (APR) of glycerol to H2. Catalyst 3Pt/3CeAl, which bore 3 wt% Pt on a support that contained 3 wt % CeO2, showed the highest carbon conversion to gas (85%) and the highest H2 yield (80%) for a feedstock of 1 wt% glycerol in water at 240 °C and 40 bar. A CeO2/Al2O3 support with only 1 wt% Pt also showed high H2 selectivity and carbon conversion to gas, as well as a much lower CH4 yield than the benchmark 3Pt/Al catalyst, clearly demonstrating that doping the support with 3 wt% CeO2 improved the APR of glycerol. H2 chemisorption results showed that the highest metal dispersion (58%) and active surface area (4.3 m(2)g(-1)) were achieved for the support that contained 3 wt% CeO2, and this effect appeared to be primarily responsible for the high H2 yield and carbon conversion to gas. No CO was observed in the product gas; therefore, this gas could potentially be used directly in proton exchange membrane fuel cells. Thus, including CeO2 in the Al2O3 catalyst support enhanced both the activity and selectivity towards H2 of a Pt catalyst for the APR of glycerol.


Assuntos
Óxido de Alumínio/química , Cério/química , Glicerol/química , Platina/química , Água/química , Catálise , Pressão , Temperatura
17.
ACS Appl Mater Interfaces ; 5(8): 3063-70, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23517303

RESUMO

Aligned multiwalled carbon nanotube (CNT) arrays were prepared using chemical vapor deposition of C2H4 on Fe catalyst at 750 °C. CNT array height and alignment depends strongly on the duration of H2 pretreatment, with optimal height and alignment achieved using 10-15 min pretreatment. Small-angle X-ray scattering (SAXS) was used to quantify the alignment, distribution, and size of the CNTs in arrays produced from varying pretreatment times and the results correlated with microscopy measurements. SAXS analysis revealed that the higher section of the CNT arrays exhibited better alignment than the lower section. Combining these insights with transmission electron microscopy measurements of the CNT defects within each array enable a mechanism for the CNT growth to be proposed, where the loss of alignment arises from deformation of the CNTs during their growth. Gas permeation test across densified CNT arrays indicated that the alignment of the CNT array plays an important role in the gas transport, and that the gas diffusion across the well-aligned CNT arrays was enhanced by a factor of ~45, which is much more than that across the poorly aligned CNT arrays, with an enhancement factor of ~8.

18.
ACS Appl Mater Interfaces ; 4(7): 3718-23, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22746549

RESUMO

Preparation of bismuth vanadate and cerium dioxide (BiVO4/CeO2) nanocomposites as visible-light photocatalysts was successfully obtained by coupling a homogeneous precipitation method with hydrothermal techniques. The BiVO4/CeO2 nanocomposites with different mole ratios were synthesized and characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Absorption range and band gap energy, which are responsible for the observed photocatalyst behavior, were investigated by UV-vis diffuse reflectance (UV-vis DR) spectroscopy. Photocatalytic activities of the prepared samples were examined by studying the degradation of model dyes Methylene Blue, Methyl Orange, and a mixture of Methylene Blue and Methyl Orange solutions under visible-light irradiation (>400 nm). Results clearly show that the BiVO4/CeO2 nanocomposite in a 0.6:0.4 mol ratio exhibited the highest photocatalytic activity in dye wastewater treatment.


Assuntos
Bismuto/química , Cério/química , Luz , Nanocompostos/química , Fotólise , Vanadatos/química , Compostos Azo/química , Catálise , Corantes/química , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/métodos , Humanos , Azul de Metileno/química , Águas Residuárias/química
19.
ChemSusChem ; 5(7): 1233-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22696244

RESUMO

Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target.


Assuntos
Fontes de Energia Elétrica , Membranas Artificiais , Nanopartículas Metálicas/química , Micro-Ondas , Nanotubos de Carbono/química , Platina/química , Prótons , Catálise , Eletrodos
20.
ACS Appl Mater Interfaces ; 4(1): 44-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22148519

RESUMO

A highly sensitive and selective dopamine sensor was fabricated with the unique 3D carbon nanotube nanoweb (CNT-N) electrode. The as-synthesised CNT-N was modified by oxygen plasma to graft functional groups in order to increase selective electroactive sites at the CNT sidewalls. This electrode was characterized physically and electrochemically using HRSEM, Raman, FT-IR, and cyclic voltammetry (CV). Our investigations indicated that the O(2)-plasma treated CNT-N electrode could serve as a highly sensitive biosensor for the selective sensing of dopamine (DA, 1 µM to 20 µM) in the presence of ascorbic acid (AA, 1000 µM).


Assuntos
Técnicas Biossensoriais/instrumentação , Dopamina/química , Nanotubos de Carbono/química , Adsorção , Técnicas Biossensoriais/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...