Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(12): 11914-11922, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306458

RESUMO

Switching the crystalline phase of a material via electrostatic control is a proven strategy for developing memory devices such as memristors that are based on nonvolatile resistance switching phenomena. However, phase switching in atomic-scale systems is often difficult to control and poorly understood. Here, we explore nonvolatile switching of long 2.3 nm wide bistable nanophase domains in a Sn double-layer structure grown on Si(111), using a scanning tunneling microscope. We identified two mechanisms for this phase switching phenomenon. First, the electrical field across the tunnel gap continuously tunes the relative stability of the two phases and favors one over the other depending on the tunneling polarity. The second mechanism involves carrier injection into empty Sn orbitals. The coupling between these relatively long-lived hot electrons and surface phonons induces a lattice instability at sufficiently large tunneling current and provides access to a hidden metastable state of matter. This hidden state is nonvolatile but can be erased by choosing the appropriate tunneling conditions or raising the temperature. Similar mechanisms could possibly be exploited in phase-change memristor and field effect devices.

2.
Phys Rev Lett ; 125(11): 117001, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976011

RESUMO

Adsorption of one-third monolayer of Sn on an atomically clean Si(111) substrate produces a two-dimensional triangular adatom lattice with one unpaired electron per site. This dilute adatom reconstruction is an antiferromagnetic Mott insulator; however, the system can be modulation doped and metallized using heavily doped p-type Si(111) substrates. Here, we show that the hole-doped dilute adatom layer on a degenerately doped p-type Si(111) wafer is superconducting with a critical temperature of 4.7±0.3 K. While a phonon-mediated coupling scenario would be consistent with the observed T_{c}, Mott correlations in the Sn-derived dangling-bond surface state could suppress the s-wave pairing channel. The latter suggests that the superconductivity in this triangular adatom lattice may be unconventional.

3.
Nat Commun ; 8: 14721, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266499

RESUMO

Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.

4.
Phys Rev Lett ; 119(26): 266802, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328725

RESUMO

The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional sp-bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

5.
Nanotechnology ; 27(13): 135704, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894452

RESUMO

We demonstrate for the first time to our knowledge that controllable dissociation of PH3 adsorption products PHx (x = 2, 1) can be realized by STM (scanning tunneling microscope) manipulation techniques at room temperature. Five dissociative products and their geometric structures are identified via combining STM experiments and first-principle calculations and simulations. In total we realize nine kinds of controllable dissociations by applying a voltage pulse among the PH3-related structures on Si(001). The dissociation rates of the five most common reactions are measured by the I-t spectrum method as a function of voltage. The suddenly increased dissociation rate at 3.3 V indicates a transition from multivibrational excitation to single-step excitation induced by inelastic tunneling electrons. Our studies prove that selectively breaking the chemical bonds of a single molecule on semiconductor surface by STM manipulation technique is feasible.

6.
Phys Rev Lett ; 113(19): 196802, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415916

RESUMO

Exploration and manipulation of electronic states in low-dimensional systems are of great importance in the fundamental and practical aspects of nanomaterial and nanotechnology. Here, we demonstrate that the incorporation of vacancy defects into monatomic indium wires on n-type Si(111) can stabilize electronically phase-separated ground states where the insulating 8×2 and metallic 4×1 phases coexist. Furthermore, the areal ratio of the two phases in the phase-separated states can be tuned reversibly by electric field or charge doping, and such tunabilities can be quantitatively captured by first principles-based modeling and simulations. The present results extend the realm of electronic phase separation from strongly correlated d-electron materials typically in bulk form to weakly interacting sp-electron systems in reduced dimensionality.

7.
J Phys Condens Matter ; 23(48): 485001, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22034437

RESUMO

Using scanning tunneling spectroscopy, we have studied the interface effect on quantum well states of Pb thin films grown on various metal-terminated (Pb, Ag, and Au) n-type Si(111) surfaces and on two different p-type Si(111) surfaces. The dispersion relation E(k) of the electrons of the Pb film and the phase shift at the substrate interface were determined by applying the quantization rule to the measured energy positions of the quantum well states. Characteristic features in the phase shift versus energy curves were identified and were correlated to the directional conduction band of the silicon substrate and to the Schottky barrier formed between the metal film and the semiconductor. A model involving the band structure of the substrate, the Schottky barrier, and the effective thickness of the interface was introduced to qualitatively but comprehensively explain all the observed features of the phase shift at the substrate interface. Our physical understanding of the phase shift is critically important for using interface modification to control the quantum well states.

8.
ACS Nano ; 5(9): 7608-16, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21819127

RESUMO

Atomic manipulation has been rarely used in the studies of complex structures and a low temperature requirement usually limits its application. Herein we have demonstrated a vertical manipulation technique to reproducibly and reversibly manipulating Ag atoms on an Si(111)-(7×7) surface by a scanning tunneling microscope tip at room temperature. Simple and complex Ag nanoclusters were assembled and disassembled with a precise control of single Ag atoms, which provided critical information on the size of these nanoclusters. The manipulation showed the growth processes of these Ag clusters and even partly unveiled their atomic structures. This technique can form a fundamental basis for further studies of the Ag/Si(111)-(7×7) system and for fabricating functional nanodevices in various metal-semiconductor systems.

9.
J Phys Condens Matter ; 23(26): 265007, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21666303

RESUMO

By measuring the temperature-dependent tunneling spectroscopy of a set of flat-top Pb islands from 3.2 to 15 K, the limiting size of a nine-monolayer-thick Pb island with superconductivity above 3.2 K was determined to be ∼ 30 nm(2), in good agreement with the Anderson criterion. Further analysis indicates that the zero-temperature energy gap decreases significantly faster than the transition temperature when the Pb island size approaches this limit. This leads to a decrease of 2Δ(0)/k(B)T(C) from 4.5 to 3.3, thus showing that the Pb island superconductors undergo a change from strong to weak electron-phonon coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...