Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701371

RESUMO

The early marine life of Pacific salmon is believed to be a critical period limiting population-level survival. Recent evidence suggests that some infectious agents are associated with survival but linkages with underlying physiological mechanisms are lacking. While challenge studies can demonstrate cause and effect relationships between infection and pathological change or mortality, in some cases pathological change may only manifest in the presence of environmental stressors; thus, it is important to gain context from field observations. Herein, we examined physiological correlates with infectious agent loads in Chinook salmon during their first ocean year. We measured physiology at the molecular (gene expression), metabolic (plasma chemistry) and cellular (histopathology) levels. Of 46 assayed infectious agents, 27 were detected, including viruses, bacteria and parasites. This exploratory study identified.a strong molecular response to viral disease and pathological change consistent with jaundice/anemia associated with Piscine orthoreovirus,strong molecular signals of gill inflammation and immune response associated with gill agents `Candidatus Branchiomonas cysticola' and Parvicapsula pseudobranchicola,a general downregulation of gill immune response associated with Parvicapsula minibicornis complementary to that of P. pseudobranchicola.Importantly, our study provides the first evidence that the molecular activation of viral disease response and the lesions observed during the development of the PRV-related disease jaundice/anemia in farmed Chinook salmon are also observed in wild juvenile Chinook salmon.

2.
Sci Rep ; 13(1): 5473, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016008

RESUMO

Although infectious agents can act as strong population regulators, knowledge of their spatial distributions in wild Pacific salmon is limited, especially in the marine environment. Characterizing pathogen distributions during early marine residence, a period considered a survival bottleneck for Pacific salmon, may reveal where salmon populations are exposed to potentially detrimental pathogens. Using high-throughput qPCR, we determined the prevalence of 56 infectious agents in 5719 Chinook, 2032 Coho and 4062 Sockeye salmon, sampled between 2008 and 2018, in their first year of marine residence along coastal Western Canada. We identified high prevalence clusters, which often shifted geographically with season, for most of the 41 detected agents. A high density of infection clusters was found in the Salish Sea along the east coast of Vancouver Island, an important migration route and residence area for many salmon populations, some experiencing chronically poor marine survival. Maps for each infectious agent taxa showing clusters across all host species are provided. Our novel documentation of salmon pathogen distributions in the marine environment contributes to the ecological knowledge regarding some lesser known pathogens, identifies salmon populations potentially impacted by specific pathogens, and pinpoints priority locations for future research and remediation.


Assuntos
Oncorhynchus , Animais , Colúmbia Britânica/epidemiologia , Salmão
3.
Mol Ecol Resour ; 22(5): 1824-1835, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212146

RESUMO

Genetic stock identification (GSI) from genotyping-by-sequencing of single nucleotide polymorphism (SNP) loci has become the gold standard for stock of origin identification in Pacific salmon. The sequencing platforms currently applied require large batch sizes and multiday processing in specialized facilities to perform genotyping by the thousands. However, recent advances in third-generation single-molecule sequencing platforms, such as the Oxford Nanopore minION, provide base calling on portable, pocket-sized sequencers and promise real-time, in-field stock identification of variable batch sizes. Here we evaluate utility and comparability to established GSI platforms of at-sea stock identification of coho salmon (Oncorhynchus kisutch) using targeted SNP amplicon sequencing on the minION platform during a high-sea winter expedition to the Gulf of Alaska. As long read sequencers are not optimized for short amplicons, we concatenate amplicons to increase coverage and throughput. Nanopore sequencing at-sea yielded data sufficient for stock assignment for 50 out of 80 individuals. Nanopore-based SNP calls agreed with Ion Torrent-based genotypes in 83.25%, but assignment of individuals to stock of origin only agreed in 61.5% of individuals, highlighting inherent challenges of Nanopore sequencing, such as resolution of homopolymer tracts and indels. However, poor representation of assayed salmon in the queried baseline data set contributed to poor assignment confidence on both platforms. Future improvements will focus on lowering turnaround time and cost, increasing accuracy and throughput, as well as augmentation of the existing baselines. If successfully implemented, Nanopore sequencing will provide an alternative method to the large-scale laboratory approach by providing mobile small batch genotyping to diverse stakeholders.


Assuntos
Sequenciamento por Nanoporos , Oncorhynchus kisutch , Alaska , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Oncorhynchus kisutch/genética , Análise de Sequência de DNA/métodos
4.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039598

RESUMO

Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact of viral pathogens such as Piscine orthoreovirus-1 (PRV-1) on endangered wild salmon populations, their epidemiology in wild fish populations remains obscure, as does the role of aquaculture in global and local spread. Our phylogeographic analyses of PRV-1 suggest that development of Atlantic salmon aquaculture facilitated spread from Europe to the North and South East Pacific. Phylogenetic analysis and reverse transcription polymerase chain reaction surveillance further illuminate the circumstances of emergence of PRV-1 in the North East Pacific and provide strong evidence for Atlantic salmon aquaculture as a source of infection in wild Pacific salmon. PRV-1 is now an important infectious agent in critically endangered wild Pacific salmon populations, fueled by aquacultural transmission.


Assuntos
Doenças dos Peixes , Infecções por Reoviridae , Salmo salar , Animais , Aquicultura , Doenças dos Peixes/epidemiologia , Filogenia , Infecções por Reoviridae/epidemiologia
5.
Virus Evol ; 7(1): veaa069, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33623707

RESUMO

The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied in situ hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.

6.
Conserv Physiol ; 7(1): coz051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620289

RESUMO

Early marine survival of juvenile salmon is intimately associated with their physiological condition during smoltification and ocean entry. Smoltification (parr-smolt transformation) is a developmental process that allows salmon to acquire seawater tolerance in preparation for marine living. Traditionally, this developmental process has been monitored using gill Na+/K+-ATPase (NKA) activity or plasma hormones, but gill gene expression offers the possibility of another method. Here, we describe the discovery of candidate genes from gill tissue for staging smoltification using comparisons of microarray studies with particular focus on the commonalities between anadromous Rainbow trout and Sockeye salmon datasets, as well as a literature comparison encompassing more species. A subset of 37 candidate genes mainly from the microarray analyses was used for TaqMan quantitative PCR assay design and their expression patterns were validated using gill samples from four groups, representing three species and two ecotypes: Coho salmon, Sockeye salmon, stream-type Chinook salmon and ocean-type Chinook salmon. The best smoltification biomarkers, as measured by consistent changes across these four groups, were genes involved in ion regulation, oxygen transport and immunity. Smoltification gene expression patterns (using the top 10 biomarkers) were confirmed by significant correlations with NKA activity and were associated with changes in body brightness, caudal fin darkness and caudal peduncle length. We incorporate gene expression patterns of pre-smolt, smolt and de-smolt trials from acute seawater transfers from a companion study to develop a preliminary seawater tolerance classification model for ocean-type Chinook salmon. This work demonstrates the potential of gene expression biomarkers to stage smoltification and classify juveniles as pre-smolt, smolt or de-smolt.

7.
PLoS One ; 14(9): e0221956, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479469

RESUMO

Infectious diseases are potential contributors to decline in Coho salmon (Oncorhynchus kisutch) populations. Although pathogens are theoretically considered to pose higher risk in high-density rearing environments like hatcheries, there is no direct evidence that hatchery-origin Coho salmon increase the transmission of infectious agents to sympatric wild populations. This study was undertaken to compare prevalence, burden, and diversity of infectious agents between hatchery-reared and wild juvenile Coho salmon in British Columbia (BC), Canada. In total, 2,655 juvenile Coho salmon were collected between 2008 and 2018 from four regions of freshwater and saltwater in BC. High-throughput microfluidics qPCR was employed for simultaneous detection of 36 infectious agents from mixed-tissue samples (gill, brain, heart, liver, and kidney). Thirty-one agents were detected at least once, including ten with prevalence >5%. Candidatus Brachiomonas cysticola, Paraneuclospora theridion, and Parvicapsula pseudobranchiocola were the most prevalent agents. Diversity and burden of infectious agents were substantially higher in marine environment than in freshwater. In Mainland BC, infectious burden and diversity were significantly lower in hatchery smolts than in wild counterparts, whereas in other regions, there were no significant differences. Observed differences in freshwater were predominantly driven by three parasites, Loma salmonae, Myxobolus arcticus, and Parvicapsula kabatai. In saltwater, there were no consistent differences in agent prevalence between hatchery and wild fish shared among the west and east coasts of Vancouver Island. Although some agents showed differential infectious patterns between regions, annual variations likely contributed to this signal. Our findings do not support the hypothesis that hatchery smolts carry higher burdens of infectious agents than conspecific wild fish, reducing the potential risk of transfer to wild smolts at this life stage. Moreover, we provide a baseline of infectious agents in juvenile Coho salmon that will be used in future research and modeling potential correlations between infectious profiles and marine survival.


Assuntos
Oncorhynchus kisutch/microbiologia , Oncorhynchus kisutch/parasitologia , Animais , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Colúmbia Britânica/epidemiologia , Burkholderiales/isolamento & purificação , Burkholderiales/patogenicidade , Enterocytozoon/isolamento & purificação , Enterocytozoon/patogenicidade , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Pesqueiros , Água Doce , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Microsporidiose/veterinária , Myxozoa/isolamento & purificação , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Prevalência , Fatores de Risco , Água do Mar
8.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478480

RESUMO

The collapse of iconic, keystone populations of sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon in the Northeast Pacific is of great concern. It is thought that infectious disease may contribute to declines, but little is known about viruses endemic to Pacific salmon. Metatranscriptomic sequencing and surveillance of dead and moribund cultured Chinook salmon revealed a novel arenavirus, reovirus and nidovirus. Sequencing revealed two different arenavirus variants which each infect wild Chinook and sockeye salmon. In situ hybridisation localised arenavirus mostly to blood cells. Population surveys of >6000 wild juvenile Chinook and sockeye salmon showed divergent distributions of viruses, implying different epidemiological processes. The discovery in dead and dying farmed salmon of previously unrecognised viruses that are also widely distributed in wild salmon, emphasizes the potential role that viral disease may play in the population dynamics of wild fish stocks, and the threat that these viruses may pose to aquaculture.


Assuntos
Arenavirus/isolamento & purificação , Doenças dos Peixes/virologia , Nidovirales/isolamento & purificação , Reoviridae/isolamento & purificação , Salmão/virologia , Viroses/veterinária , Animais , Arenavirus/classificação , Arenavirus/genética , Células Sanguíneas/virologia , Hibridização In Situ , Metagenômica , Nidovirales/classificação , Nidovirales/genética , Oceano Pacífico , Reoviridae/classificação , Reoviridae/genética , Análise de Sequência de DNA , Transcrição Gênica , Viroses/virologia
9.
Viruses ; 11(4)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003511

RESUMO

Viral erythrocytic necrosis (VEN) affects over 20 species of marine and anadromous fishes in the North Atlantic and North Pacific Oceans. However, the distribution and strain variation of its viral causative agent, erythrocytic necrosis virus (ENV), has not been well characterized within Pacific salmon. Here, metatranscriptomic sequencing of Chinook salmon revealed that ENV infecting salmon was closely related to ENV from Pacific herring, with inferred amino-acid sequences from Chinook salmon being 99% identical to those reported for herring. Sequence analysis also revealed 89 protein-encoding sequences attributed to ENV, greatly expanding the amount of genetic information available for this virus. High-throughput PCR of over 19,000 fish showed that ENV is widely distributed in the NE Pacific Ocean and was detected in 12 of 16 tested species, including in 27% of herring, 38% of anchovy, 17% of pollock, and 13% of sand lance. Despite frequent detection in marine fish, ENV prevalence was significantly lower in fish from freshwater (0.03%), as assessed with a generalized linear mixed effects model (p = 5.5 × 10-8). Thus, marine fish are likely a reservoir for the virus. High genetic similarity between ENV obtained from salmon and herring also suggests that transmission between these hosts is likely.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridoviridae/classificação , Iridoviridae/fisiologia , Salmão/virologia , Animais , Colúmbia Britânica , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/epidemiologia , Peixes/classificação , Peixes/virologia , Iridoviridae/genética , Iridoviridae/isolamento & purificação , Hibridização de Ácido Nucleico , Oceano Pacífico , Filogenia , Estações do Ano , Água do Mar/virologia , Análise de Sequência de RNA , Carga Viral , Proteínas Virais/genética
10.
BMC Genomics ; 19(1): 749, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326831

RESUMO

BACKGROUND: Pacific salmon (Oncorhynchus spp.) serve as good biological indicators of the breadth of climate warming effects on fish because their anadromous life cycle exposes them to environmental challenges in both marine and freshwater environments. Our study sought to mine the extensive functional genomic studies in fishes to identify robust thermally-responsive biomarkers that could monitor molecular physiological signatures of chronic thermal stress in fish using non-lethal sampling of gill tissue. RESULTS: Candidate thermal stress biomarkers for gill tissue were identified using comparisons among microarray datasets produced in the Molecular Genetics Laboratory, Pacific Biological Station, Nanaimo, BC, six external, published microarray studies on chronic and acute temperature stress in salmon, and a comparison of significant genes across published studies in multiple fishes using deep literature mining. Eighty-two microarray features related to 39 unique gene IDs were selected as candidate chronic thermal stress biomarkers. Most of these genes were identified both in the meta-analysis of salmon microarray data and in the literature mining for thermal stress markers in salmonids and other fishes. Quantitative reverse transcription PCR (qRT-PCR) assays for 32 unique genes with good efficiencies across salmon species were developed, and their activity in response to thermally challenged sockeye salmon (O. nerka) and Chinook salmon (O. tshawytscha) (cool, 13-14 °C and warm temperatures 18-19 °C) over 5-7 days was assessed. Eight genes, including two transcripts of each SERPINH1 and HSP90AA1, FKBP10, MAP3K14, SFRS2, and EEF2 showed strong and robust chronic temperature stress response consistently in the discovery analysis and both sockeye and Chinook salmon validation studies. CONCLUSIONS: The results of both discovery analysis and gene expression showed that a panel of genes involved in chaperoning and protein rescue, oxidative stress, and protein biosynthesis were differentially activated in gill tissue of Pacific salmon in response to elevated temperatures. While individually, some of these biomarkers may also respond to other stressors or biological processes, when expressed in concert, we argue that a biomarker panel comprised of some or all of these genes could provide a reliable means to specifically detect thermal stress in field-caught salmon.


Assuntos
Marcadores Genéticos/genética , Resposta ao Choque Térmico/genética , Salmonidae/genética , Salmonidae/fisiologia , Animais , Perfilação da Expressão Gênica , Perfil Genético , Brânquias/metabolismo
11.
Front Microbiol ; 9: 3221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627126

RESUMO

Infectious diseases may contribute to declines in Fraser River Sockeye salmon (Oncorhynchus nerka) stocks, but a clear knowledge gap exists around which infectious agents and diseases are important. This study was conducted to: (1) determine the presence and prevalence of 46 infectious agents in juvenile Fraser River Sockeye salmon, and (2) evaluate spatial patterns in prevalence and burden over initial seaward migration, contrasting patterns between 2 years of average and poor productivity. In total, 2,006 out-migrating Sockeye salmon were collected from four regions along their migration trajectory in British Columbia, in 2012 and 2013. High-throughput microfluidics quantitative PCR was employed for simultaneous quantitation of 46 different infectious agents. Twenty-six agents were detected at least once, including nine with prevalence >5%. Candidatus Brachiomonas cysticola, Myxobolus arcticus, and Pacific salmon parvovirus were the most prevalent agents. Infectious agent diversity and burden increased consistently upon smolts entry into the ocean, but they did not substantially change afterwards. Notably, both freshwater- and saltwater-transmitted agents were more prevalent in 2013 than in 2012, leading to an overall higher infection burden in the first two sampling regions. A reduction in the prevalence of two agents, erythrocytic necrosis virus and Paraneuclospora theridion, was observed between regions 2 and 3, which was speculated to be associated with mortality during the 1st month at sea. The most prevalent infectious agents were all naturally occurring. In a small number of samples (0.9%), seven agents were only detected around and after salmon farming regions, including four important pathogens: piscine orthoreovirus, Piscirickettsia salmonis, Tenacibaculum maritimum, and Moritella viscosa. As the first synoptic survey of infectious agents in juvenile Sockeye salmon in British Columbia, this study provides the necessary baseline for further research on the most prevalent infectious agents and their potential pathogenicity, which may adversely affect the productivity of valuable Sockeye salmon stocks. In addition, our findings are informative to the decision makers involved in conservation programs.

12.
Conserv Physiol ; 5(1): cox036, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702195

RESUMO

Infectious diseases can impact the physiological performance of individuals, including their mobility, visual acuity, behavior and tolerance and ability to effectively respond to additional stressors. These physiological effects can influence competitiveness, social hierarchy, habitat usage, migratory behavior and risk to predation, and in some circumstances, viability of populations. While there are multiple means of detecting infectious agents (microscopy, culture, molecular assays), the detection of infectious diseases in wild populations in circumstances where mortality is not observable can be difficult. Moreover, if infection-related physiological compromise leaves individuals vulnerable to predation, it may be rare to observe wildlife in a late stage of disease. Diagnostic technologies designed to diagnose cause of death are not always sensitive enough to detect early stages of disease development in live-sampled organisms. Sensitive technologies that can differentiate agent carrier states from active disease states are required to demonstrate impacts of infectious diseases in wild populations. We present the discovery and validation of salmon host transcriptional biomarkers capable of distinguishing fish in an active viral disease state [viral disease development (VDD)] from those carrying a latent viral infection, and viral versus bacterial disease states. Biomarker discovery was conducted through meta-analysis of published and in-house microarray data, and validation performed on independent datasets including disease challenge studies and farmed salmon diagnosed with various viral, bacterial and parasitic diseases. We demonstrate that the VDD biomarker panel is predictive of disease development across RNA-viral species, salmon species and salmon tissues, and can recognize a viral disease state in wild-migrating salmon. Moreover, we show that there is considerable overlap in the biomarkers resolved in our study in salmon with those based on similar human viral influenza research, suggesting a highly conserved suite of host genes associated with viral disease that may be applicable across a broad range of vertebrate taxa.

13.
Evol Appl ; 7(7): 812-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25469162

RESUMO

Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.

14.
Mol Ecol ; 22(18): 4783-800, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24033436

RESUMO

The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations.


Assuntos
Genes MHC da Classe II , Genes MHC Classe I , Variação Genética , Salmão/genética , Seleção Genética , Alaska , Alelos , Animais , Colúmbia Britânica , Frequência do Gene , Loci Gênicos , Genética Populacional , Japão , Repetições de Microssatélites , Washington
15.
Fish Shellfish Immunol ; 31(3): 507-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21718785

RESUMO

Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection.


Assuntos
Genes MHC Classe I/genética , Genes MHC Classe I/fisiologia , Salmão/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Filogenia
16.
Immunogenetics ; 58(7): 571-89, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794819

RESUMO

An unprecedented level of sequence diversity has been maintained in the salmonid major histocompatibility complex (MHC) class I UBA gene, with between lineage AA sequence identities as low as 34%. The derivation of deep allelic lineages may have occurred through interlocus exon shuffling or convergence of ancient loci with the UBA locus, but until recently, no such ancient loci were uncovered. Herein, we document the existence of eight additional MHC class I loci in salmon (UCA, UDA, UEA, UFA, UGA, UHA, ULA, and ZE), six of which share exon 2 and 3 lineages with UBA, and three of which have not been described elsewhere. Half of the UBA exon 2 lineages and all UBA exon 3 lineages are shared with other loci. Two loci, UGA and UEA, share only a single exon lineage with UBA, likely generated through exon shuffling. Based on sequence homologies, we hypothesize that most exchanges and duplications occurred before or during tetraploidization (50 to 100 Ma). Novel loci that share no relationship with other salmonid loci are also identified (UHA and ZE). Each locus is evaluated for its potential to function as a class Ia gene based on gene expression, conserved residues and polymorphism. UBA is the only locus that can indisputably be classified as a class Ia gene, although three of the eight loci (ZE, UCA, and ULA) conform in three out of four measures. We hypothesize that these additional loci are in varying states of degradation to class Ib genes.


Assuntos
Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Oncorhynchus mykiss/imunologia , Salmo salar/imunologia , Sequência de Aminoácidos , Animais , Códon de Terminação/genética , Éxons , Duplicação Gênica , Expressão Gênica , Ligação Genética , Genótipo , Homozigoto , Dados de Sequência Molecular , Oncorhynchus mykiss/genética , Filogenia , Polimorfismo Genético , Salmo salar/genética , Salmonidae/genética , Salmonidae/imunologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...