Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(6): 1615-1638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418768

RESUMO

The scientific diagnosis and treatment of patients with diabetes require frequent blood glucose testing and insulin delivery to normoglycemia. Therefore, an artificial pancreas with a continuous blood glucose (BG) monitoring function is an urgent research target in the medical industry. The problem of closed-loop algorithmic control of the BG with a time delay is a key and difficult issue that needs to be overcome in the development of an artificial pancreas. Firstly, the composition, structure, and control characteristics of the artificial pancreas are introduced. Subsequently, the research progress of artificial pancreas control algorithms is reviewed, and the characteristics, advantages, and disadvantages of proportional-integral-differential control, model predictive control, and artificial intelligence control are compared and analyzed to determine whether they are suitable for the practical application of the artificial pancreas. Additionally, key advancements in areas such as blood glucose data monitoring, adaptive models, wearable devices, and fully automated artificial pancreas systems are also reviewed. Finally, this review highlights that meal prediction, control safety, integration, streamlining the optimization of control algorithms, constant temperature preservation of insulin, and dual-hormone artificial pancreas are issues that require further attention in the future.


Assuntos
Algoritmos , Glicemia , Insulina , Pâncreas Artificial , Humanos , Glicemia/análise , Insulina/administração & dosagem , Automonitorização da Glicemia/métodos , Inteligência Artificial , Diabetes Mellitus/terapia , Sistemas de Infusão de Insulina
2.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960480

RESUMO

In recent years, infrared thermographic (IRT) technology has experienced notable advancements and found widespread applications in various fields, such as renewable industry, electronic industry, construction, aviation, and healthcare. IRT technology is used for defect detection due to its non-contact, efficient, and high-resolution methods, which enhance product quality and reliability. This review offers an overview of active IRT principles. It comprehensively examines four categories based on the type of heat sources employed: pulsed thermography (PT), lock-in thermography (LT), ultrasonically stimulated vibration thermography (UVT), and eddy current thermography (ECT). Furthermore, the review explores the application of IRT imaging in the renewable energy sector, with a specific focus on the photovoltaic (PV) industry. The integration of IRT imaging and deep learning techniques presents an efficient and highly accurate solution for detecting defects in PV panels, playing a critical role in monitoring and maintaining PV energy systems. In addition, the application of infrared thermal imaging technology in electronic industry is reviewed. In the development and manufacturing of electronic products, IRT imaging is used to assess the performance and thermal characteristics of circuit boards. It aids in detecting potential material and manufacturing defects, ensuring product quality. Furthermore, the research discusses algorithmic detection for PV panels, the excitation sources used in electronic industry inspections, and infrared wavelengths. Finally, the review analyzes the advantages and challenges of IRT imaging concerning excitation sources, the PV industry, the electronics industry, and artificial intelligence (AI). It provides insights into critical issues requiring attention in future research endeavors.

3.
Micromachines (Basel) ; 14(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37893411

RESUMO

The high level of stress and dimension deviation induced by glass molding are the main causes of the low yield rate of large, irregular glass components on vehicles. To solve this issue, a numerical model of large glass component molding was established in this study, which aimed to analyze the dominant factors of molding quality and achieve a synergistic balance between quality characteristics and energy consumption. The results show that molding temperature is the dominant factor affecting the energy consumption and residual stress, and the molding pressure is the main factor affecting the dimension deviation. Furthermore, the NSGA-II optimization algorithm was used to optimize the maximum residual stress, dimension deviation, and energy consumption with the numerical results. The combination of a heating rate of 1.95 °C/s, holding time of 158 s, molding temperature of 570 °C, molding pressure of 34 MPa, and cooling rate of 1.15 °C/s was determined to be the optimized scheme. The predictive error of the numerical result, based on the optimized scheme, was experimentally verified to be less than 20%. It proved the accuracy of the model in this study. These results can provide guidance for the subsequent precision molding of large, irregular glass components.

4.
Micromachines (Basel) ; 14(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630048

RESUMO

Due to the brittleness of silicon, the use of a diamond wire to cut silicon wafers is a critical stage in solar cell manufacturing. In order to improve the production yield of the cutting process, it is necessary to have a thorough understanding of the phenomena relating to the cutting parameters. This research reviews and summarizes the technology for the precision machining of monocrystalline silicon using diamond wire sawing (DWS). Firstly, mathematical models, molecular dynamics (MD), the finite element method (FEM), and other methods used for studying the principle of DWS are compared. Secondly, the equipment used for DWS is reviewed, the influences of the direction and magnitude of the cutting force on the material removal rate (MRR) are analyzed, and the improvement of silicon wafer surface quality through optimizing process parameters is summarized. Thirdly, the principles and processing performances of three assisted machining methods, namely ultrasonic vibration-assisted DWS (UV-DWS), electrical discharge vibration-assisted DWS (ED-DWS), and electrochemical-assisted DWS (EC-DWS), are reviewed separately. Finally, the prospects for the precision machining of monocrystalline silicon using DWS are provided, highlighting its significant potential for future development and improvement.

5.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498986

RESUMO

Because of their small size and large specific surface area, nanoparticles (NPs) have special properties that are different from bulk materials. In particular, Au/Ag NPs have been intensively studied for a long time, especially for biomedical applications. Thereafter, they played a significant role in the fields of biology, medical testing, optical imaging, energy and catalysis, MRI contrast agents, tumor diagnosis and treatment, environmental protection, and so on. When synthesizing Au/Ag NPs, the laser ablation and biosynthesis methods are very promising green processes. Therefore, this review focuses on the progress in the laser ablation and biological synthesis processes for Au/Ag NP generation, especially in their fabrication fundamentals and potential applications. First, the fundamentals of the laser ablation method are critically reviewed, including the laser ablation mechanism for Au/Ag NPs and the controlling of their size and shape during fabrication using laser ablation. Second, the fundamentals of the biological method are comprehensively discussed, involving the synthesis principle and the process of controlling the size and shape and preparing Au/Ag NPs using biological methods. Third, the applications in biology, tumor diagnosis and treatment, and other fields are reviewed to demonstrate the potential value of Au/Ag NPs. Finally, a discussion surrounding three aspects (similarity, individuality, and complementarity) of the two green synthesis processes is presented, and the necessary outlook, including the current limitations and challenges, is suggested, which provides a reference for the low-cost and sustainable production of Au/Ag NPs in the future.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Prata , Ouro , Catálise
6.
Comput Biol Med ; 146: 105636, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35751182

RESUMO

Machine vision is being employed in defect detection, size measurement, pattern recognition, image fusion, target tracking and 3D reconstruction. Traditional cancer detection methods are dominated by manual detection, which wastes time and manpower, and heavily relies on the pathologists' skill and work experience. Therefore, these manual detection approaches are not convenient for the inheritance of domain knowledge, and are not suitable for the rapid development of medical care in the future. The emergence of machine vision can iteratively update and learn the domain knowledge of cancer cell pathology detection to achieve automated, high-precision, and consistent detection. Consequently, this paper reviews the use of machine vision to detect cancer cells in histopathology images, as well as the benefits and drawbacks of various detection approaches. First, we review the application of image preprocessing and image segmentation in histopathology for the detection of cancer cells, and compare the benefits and drawbacks of different algorithms. Secondly, for the characteristics of histopathological cancer cell images, the research progress of shape, color and texture features and other methods is mainly reviewed. Furthermore, for the classification methods of histopathological cancer cell images, the benefits and drawbacks of traditional machine vision approaches and deep learning methods are compared and analyzed. Finally, the above research is discussed and forecasted, with the expected future development tendency serving as a guide for future research.


Assuntos
Algoritmos , Neoplasias , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem
7.
Micromachines (Basel) ; 13(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35744458

RESUMO

This paper proposed a hybrid intelligent process model, based on a hybrid model combining the two-temperature model (TTM) and molecular dynamics simulation (MDS) (TTM-MDS). Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [Physical Review B, 68, (064114):1-22.], and Gaussian process regression (GPR), for micro-electrical discharge machining (micro-EDM) were also used. A model of single-spark micro-EDM process has been constructed based on TTM-MDS model to predict the removed depth (RD) and material removal rate (MRR). Then, a GPR model was proposed to establish the relationship between input process parameters (energy area density and pulse-on duration) and the process responses (RD and MRR) for micro-EDM machining. The GPR model was trained, tested, and tuned using the data generated from the numerical simulations. Through the GPR model, it was found that micro-EDM process responses can be accurately predicted for the chosen process conditions. Therefore, the hybrid intelligent model proposed in this paper can be used for a micro-EDM process to predict the performance.

8.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564200

RESUMO

Transparent nano-ceramics have an important high-transmittance, material-integrating structure and function and a variety of potential applications, such as use in infrared windows, optical isolators, composite armors, intelligent terminal screens, and key materials of solid-state lasers. Transparent ceramics were originally developed to replace single crystals because of their low fabricating cost, controllable shape, and variable composition. Therefore, this study reviews and summarizes the development trends in transparent nano-ceramics and their potential applications. First, we review the research progress and application of laser nano-ceramic materials, focusing on the influence of controllable doping of rare earth ions on thermal conductivity and the realization of large-scale fabrication technology. Second, the latest research progress on magneto-optical transparent nano-ceramics, mainly including terbium gallium garnet (Tb3Ga5O12, TGG) ceramics and terbium aluminum garnet (Tb3Al5O12, TAG) ceramics, are summarized, and their performance is compared. Third, the research progress of transparent armor nano-ceramic materials, represented by MgAl2O3 and Aluminum oxynitride (AlON), are reviewed. Lastly, the progress in electro-optical transparent nano-ceramics and scintillation transparent nano-ceramics is reported, and the influence of the material-fabrication process on electro-optic effect or luminous intensity is compared. Moreover, the effect of particle diameter on fabrication, the relationship between nano powder and performance, and different sintering methods are discussed. In summary, this study provides a meaningful reference for low-cost and sustainable production in the future.

9.
Nanomaterials (Basel) ; 12(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35564233

RESUMO

Laser interaction with nanoparticles in liquid is the fundamental theoretical basis for many applications but it is still challenging to observe this nanoscale phenomenon within a few nanoseconds in liquid by experiment. The successful implementation of the two-temperature method integrated with molecular dynamics (TTM-MD) in laser interaction with bulk material has shown great potential in providing a panoramic view of the laser interaction with the nanoparticles. However, the current TTM-MD model has to divide the system into cubic cells, which leads to mistakes near the nanoparticle's surface. We introduce the latest model, which performs the TTM-MD on each individual cluster instead of the cubic cells, and its high-performance parallel cluster analysis algorithm to update the cluster size. The cluster-based TTM-MD revealed the nanoparticle formation mechanism of laser fragmentation in liquid (LFL) and facilitated the study of laser fluence's effect on the size distribution. In addition to LFL, this model is promising to be implemented in the laser thermal therapy of tumors, laser melting in liquid (LML), etc. Although cluster-based TTM-MD has proven to be a powerful tool for studying laser interaction with nanoparticles, a few challenges and future developments for the cluster-based TTM-MD, especially the ionization induced by femtosecond, are also discussed.

10.
Micromachines (Basel) ; 12(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34577647

RESUMO

When the water droplets are on some superhydrophobic surfaces, the surface only needs to be inclined at a very small angle to make the water droplets roll off. Hence, building a superhydrophobic surface on the material substrate, especially the metal substrate, can effectively alleviate the problems of its inability to resist corrosion and easy icing during use, and it can also give it special functions such as self-cleaning, lubrication, and drag reduction. Therefore, this study reviews and summarizes the development trends in the fabrication of superhydrophobic surface materials by non-traditional processing techniques. First, the principle of the superhydrophobic surfaces fabricated by laser beam machining (LBM) is introduced, and the machining performances of the LBM process, such as femtosecond laser, picosecond laser, and nanosecond laser, for fabricating the surfaces are compared and summarized. Second, the principle and the machining performances of the electrical discharge machining (EDM), for fabricating the superhydrophobic surfaces, are reviewed and compared, respectively. Third, the machining performances to fabricate the superhydrophobic surfaces by the electrochemical machining (ECM), including electrochemical oxidation process and electrochemical reduction process, are reviewed and grouped by materials fabricated. Lastly, other non-traditional machining processes for fabricating superhydrophobic surfaces, such as ultrasonic machining (USM), water jet machining (WJM), and plasma spraying machining (PSM), are compared and summarized. Moreover, the advantage and disadvantage of the above mentioned non-traditional machining processes are discussed. Thereafter, the prospect of non-traditional machining for fabricating the desired superhydrophobic surfaces is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...