Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138258

RESUMO

Moulding technologies are remarkably effective for parts requiring high production volumes. Yet cooling the moulds after each injection can cause a significant loss of time. A possibility for reducing the cooling times is to use cooling inserts and conformal cooling strategies. In the present case, the original inserts of a mould must be substituted because the original material cannot be utilized anymore (toxicity). Will it be technically feasible to achieve a proper cooling only by modifying the inserts? Here, the cooling inserts of high production steel moulds utilized to manufacture ribs for swimming pool sinks' plastic cages are redesigned, simulated and manufactured, taking advantage of Selective Laser Melting possibilities and without modifying the geometry of the obtained parts, nor the rest of the moulds. The results reveal a reduction in the mould cooling times of up to 8%, while maintaining the same conformation properties, thus leading to important savings of time and some global costs in the production outcomes. The study also benchmarks the production economic limits of this approach compared to other possible strategies, such as the development of full new conformal cooling moulds or the industrial production of the parts with plastic additive manufacturing (multi jet fusion) technology.

2.
Materials (Basel) ; 13(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486136

RESUMO

Bone spacers are exclusively used for replacing the tissue after trauma and/or diseases. Ceramic materials bring positive opportunities to enhance greater osteointegration and performance of implants, yet processing of porous geometries can be challenging. Additive Manufacturing (AM) opens opportunities to grade porosity levels in a part; however, its productivity may be low due to its batch processing approach. The paper studies the biological responses yielded by hydroxyapatite with ß-TCP (tricalcium phosphate) ceramic porous bone spacers manufactured by robocasting 2-layer meshes that are rolled in green and sintered. The implants are assessed in vitro and in vivo for their compatibility. Human bone marrow mesenchymal stem cells attached, proliferated and differentiated on the bone spacers produced. Cells on the spacers presented alkaline phosphatase staining, confirming osteogenic differentiation. They also expressed bone-specific COL1A1, BGAP, BSP, and SPP1 genes. The fold change of these genes ranged between 8 to 16 folds compared to controls. When implanted into the subcutaneous tissue of rabbits, they triggered collagen fibre formation and mild fibroblastic proliferation. In conclusion, rolled AM-meshes bone spacers stimulated bone formation in vitro and were biocompatible in vivo. This technology may give the advantage to custom produce spacers at high production rates if industrially upscaled.

3.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744005

RESUMO

Achieving the stable osteointegration of prosthetic implants is one of the great challenges of modern orthopedic surgery. The fixation of ceramic acetabular cups of hip joint prostheses is usually achieved using a metal shell provided with screws or pegs that penetrate into the host pelvic bone. The deposition of bioactive coatings on the implant surface to be put in contact with bone could be a valuable strategy to promote a more "physiological" osteointegration. In this work, bioactive glass porous coatings were manufactured on the top of alumina/zirconia composite implants by two different methods, i.e., sponge replication and laser cladding. The coated samples underwent immersion studies in Kokubo's simulated body fluid (SBF) to assess in vitro bioactivity and were found to exhibit an excellent hydroxyapatite-forming ability, which is key to allow bonding to bone. Biological tests using mesenchymal stem and osteoblast-like cells revealed the good biocompatibility of both types of materials. Furthermore, a higher level of mineralization was induced by the sponge-replicated coatings at 10 days. Overall, these results are highly promising and encourage further research on these materials.


Assuntos
Óxido de Alumínio , Materiais Revestidos Biocompatíveis , Vidro , Próteses e Implantes , Zircônio , Líquidos Corporais , Linhagem Celular , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
4.
Materials (Basel) ; 11(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126216

RESUMO

The aim of this paper is to explore the watertightness behaviour for high pressure applications using Multi Jet Fusion technology and polyamide 12 as a material. We report an efficient solution for manufacturing functional prototypes and final parts for water pressure applications and provide manufacturing rules for engineers in the pressurized product development process for up to 10 MPa of nominal pressure. The research findings show manufacturers the possibility of using additive manufacturing as an alternative to traditional manufacturing. Water leakage was studied using different printing orientations and wall thicknesses for a range of pressure values. An industrial ball valve was printed and validated with the ISO 9393 standard as also meeting tolerance requirements. This paper is a pioneering approach to the additive manufacturing of high-performance fluid handling components. This approach solves the problem of leakage caused by porosity in additive manufacturing technologies.

5.
Materials (Basel) ; 11(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110904

RESUMO

Additive manufacturing (AM) technologies are appropriate manufacturing technologies to produce low rotation products of high added value. Products in the spare parts business usually have discontinuous demand levels of reduced numbers of parts. Indeed, spare parts inventories handle myriad of products that require big immobilized investments while having an intrinsic risk of no-use (for example due to obsolescence or spoilage). Based on these issues, the present work analyses the fundamental cost factors in a real case study of a company dedicated to the supply of spare parts for fluid conduction systems. Real inventory data is assessed to determine the product taxonomy and its associated costs. A representative product of the stock is analyzed in detail on original manufacturing costs, in AM costs and then redesigned with topological optimization to reduce the AM cost levels (via design for additive manufacturing). A general equation for cost assessment is formulated. Given the specific data collected from the company, the parameters in this general equation are calculated. Finally, the general equation and the product cost reduction achieved are used to explore the potential economic impact of the use of AM technologies in the cost levels of manufacturing and stocking of spare part products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...