Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1186538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546272

RESUMO

Introduction: Light gradients are ubiquitous in marine systems as light reduces exponentially with depth. Seagrasses have a set of mechanisms that help them to cope with light stress gradients. Physiological photoacclimation and clonal integration help to maximize light capture and minimize carbon losses. These mechanisms can shape plants minimum light requirements (MLR), which establish critical thresholds for seagrass survival and help us predict ecosystem responses to the alarming reduction in light availability. Methods: Using the seagrass Cymodocea nodosa as a case study, we compare the MLR under different carbon model scenarios, which include photoacclimation and/or self-facilitation (based on clonal integration) and that where parameterized with values from field experiments. Results: Physiological photoacclimation conferred plants with increased tolerance to reducing light, approximately halving their MLR from 5-6% surface irradiance (SI) to ≈ 3% SI. In oligotrophic waters, this change in MLR could translate to an increase of several meters in their depth colonization limit. In addition, we show that reduced mortality rates derived from self-facilitation mechanisms (promoted by high biomass) induce bistability of seagrass meadows along the light stress gradient, leading to abrupt shifts and hysteretic behaviors at their deep limit. Discussion: The results from our models point to (i) the critical role of physiological photoacclimation in conferring greater resistance and ability to recover (i.e., resilience), to seagrasses facing light deprivation and (ii) the importance of self-facilitating reinforcing mechanisms in driving the resilience and recovery of seagrass systems exposed to severe light reduction events.

2.
Ecol Evol ; 13(3): e9929, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969938

RESUMO

Abiotic environmental conditions can significantly influence the way species interact. In particular, plant-herbivore interactions can be substantially dependent on temperature and nutrients. The overall product of these relationships is critical for the fate and stability of vegetated ecosystems like marine forests. The last few decades have seen a rapid spread of barrens on temperate rocky reefs mainly as a result of overgrazing. The ecological feedbacks that characterize the barren state involve a different set of interactions than those occurring in vegetated habitats. Reversing these trends requires a proper understanding of the novel feedbacks and the conditions under which they operate. Here, we explored the role of a secondary herbivore in reinforcing the stability of barrens formed by sea urchin overgrazing under different nutrient conditions. Combining comparative and experimental studies in two Mediterranean regions characterized by contrasting nutrient conditions, we assessed: (i) if the creation of barren areas enhances limpet abundance, (ii) the size-specific grazing impact by limpets, and (iii) the ability of limpets alone to maintain barrens. Our results show that urchin overgrazing enhanced limpet abundance. The effects of limpet grazing varied with nutrient conditions, being up to five times more intense under oligotrophic conditions. Limpets were able to maintain barrens in the absence of sea urchins only under low-nutrient conditions, enhancing the stability of the depauperate state. Overall, our study suggests a greater vulnerability of subtidal forests in oligotrophic regions of the Mediterranean and demonstrates the importance of environment conditions in regulating feedbacks mediated by plant-herbivore interactions.

3.
Mar Environ Res ; 182: 105765, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252284

RESUMO

Changes in light and sediment conditions can sometimes trigger abrupt regime shifts in seagrass meadows resulting in dramatic and unexpected die-offs of seagrass. Light attenuates rapidly with depth, and in seagrass systems with non-linear behaviours, can serve as a sharp boundary beyond which the meadow transitions to bare sand. Determining system behaviour is therefore essential to ensuring resilience is maintained and to prevent stubborn critical ecosystem transitions caused by declines in water quality. Here we combined field and modelling studies to explore the transition from meadow to bare sand in the seagrass Cymodocea nodosa at the limit of its depth distribution in a shallow, light-limited bay. We first describe the relationship between light availability and seagrass density along a depth gradient in an extensive unfragmented meadow (Alfacs bay, NE Spain). We then develop a simple mechanistic model to characterise system behaviour. In the field, we identified sharp decline in shoot density beyond a threshold of ∼1.9 m depth, shifting from a vegetated state to bare sand. The dynamic population model we developed assumes light-dependent growth and an inverse density-dependent mortality due to facilitation between shoots (mortality rate decreases as shoot density increases). The model closely tracked our empirical observations, and both the model and the field data showed signs of bistability. This strongly suggests that the depth limit of C. nodosa is a critical transition driven by photosynthetic light requirements. While the mechanisms still need to be confirmed with experimental evidence, recognizing the non-linear behaviour of C. nodosa meadows is vital not only in improving our understanding of light effects on seagrass dynamics, but also in managing shallow-water meadows. Given the shallow threshold (<2m), light-limited systems may experience significant and recalcitrant meadow retractions with even small changes in sediment and light conditions. Understanding the processes underlying meadow resilience can inform the maintenance and restoration of meadows worldwide.


Assuntos
Alismatales , Ecossistema , Areia , Fotossíntese , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...