Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17842, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857655

RESUMO

The most important challenge faced in designing orthopedic devices is to control the leaching of ions from the substrate material, and to prevent biofilm formation. Accordingly, the surgical grade stainless steel (316L SS) was electrophoretically deposited with functional composition of biopolymers and bioceramics. The composite coating consisted of: Bioglass (BG), hydroxyapatite (HA), and lawsone, that were loaded into a polymeric matrix of Xanthan Dialdehyde/Chondroitin Sulfate (XDA/CS). The parameters and final composition for electrophoretic deposition were optimized through trial-and-error approach. The composite coating exhibited significant adhesion strength of "4B" (ASTM D3359) with the substrate, suitable wettability of contact angle 48°, and an optimum average surface roughness of 0.32 µm. Thus, promoting proliferation and attachment of bone-forming cells, transcription factors, and proteins. Fourier transformed infrared spectroscopic analysis revealed a strong polymeric network formation between XDA and CS. scanning electron microscopy and energy dispersive X-ray spectroscopy analysis displayed a homogenous surface with invariable dispersion of HA and BG particles. The adhesion, hydrant behavior, and topography of said coatings was optimal to design orthopedic implant devices. The said coatings exhibited a clear inhibition zone of 21.65 mm and 21.04 mm with no bacterial growth against Staphylococcus aureus (S. Aureus) and Escherichia coli (E. Coli) respectively, confirming the antibacterial potential. Furthermore, the crystals related to calcium (Ca) and HA were seen after 28 days of submersion in simulated body fluid. The corrosion current density, of the above-mentioned coating was minimal as compared to the bare 316L SS substrate. The results infer that XDA/CS/BG/HA/lawsone based composite coating can be a candidate to design coatings for orthopedic implant devices.


Assuntos
Durapatita , Staphylococcus aureus , Durapatita/química , Escherichia coli , Polímeros/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
2.
ACS Omega ; 8(20): 18074-18089, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251160

RESUMO

There is an urgent need to develop biodegradable implants that can degrade once they have fulfilled their function. Commercially pure magnesium (Mg) and its alloys have the potential to surpass traditional orthopedic implants due to their good biocompatibility and mechanical properties, and most critically, biodegradability. The present work focuses on the synthesis and characterization (microstructural, antibacterial, surface, and biological properties) of poly(lactic-co-glycolic) acid (PLGA)/henna (Lawsonia inermis)/Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) composite coatings deposited via electrophoretic deposition (EPD) on Mg substrates. PLGA/henna/Cu-MBGNs composite coatings were robustly deposited on Mg substrates using EPD, and their adhesive strength, bioactivity, antibacterial activity, corrosion resistance, and biodegradability were thoroughly investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy studies confirmed the uniformity of the coatings' morphology and the presence of functional groups that were attributable to PLGA, henna, and Cu-MBGNs, respectively. The composites exhibited good hydrophilicity with an average roughness of 2.6 µm, indicating desirable properties for bone forming cell attachment, proliferation, and growth. Crosshatch and bend tests confirmed that the adhesion of the coatings to Mg substrates and their deformability were adequate. Electrochemical Tafel polarization tests revealed that the composite coating adjusted the degradation rate of Mg substrate in a human physiological environment. Incorporating henna into PLGA/Cu-MBGNs composite coatings resulted in antibacterial activity against Escherichia coli and Staphylococcus aureus. The coatings stimulated the proliferation and growth of osteosarcoma MG-63 cells during the initial incubation period of 48 h (determined by the WST-8 assay).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...