Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
NPJ Precis Oncol ; 8(1): 137, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942998

RESUMO

Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.

2.
Med Image Anal ; 94: 103132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442527

RESUMO

Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively validated).


Assuntos
Neoplasias da Mama , Mitose , Humanos , Feminino , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Técnicas Histológicas , Processamento de Imagem Assistida por Computador/métodos
3.
NPJ Precis Oncol ; 8(1): 5, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184744

RESUMO

Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study, we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin & Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines. We employ patient-wise drug sensitivities imputed from gene expression-based mapping of drug effects on cancer cell lines to train a deep learning model that predicts patients' sensitivity to multiple drugs from WSIs. We show that it is possible to use routine WSIs to predict the drug sensitivity profile of a cancer patient for a number of approved and experimental drugs. We also show that the proposed approach can identify cellular and histological patterns associated with drug sensitivity profiles of cancer patients.

4.
J Pathol Clin Res ; 10(1): e346, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873865

RESUMO

Early-stage estrogen receptor positive and human epidermal growth factor receptor negative (ER+/HER2-) luminal breast cancer (BC) is quite heterogeneous and accounts for about 70% of all BCs. Ki67 is a proliferation marker that has a significant prognostic value in luminal BC despite the challenges in its assessment. There is increasing evidence that spatial colocalization, which measures the evenness of different types of cells, is clinically important in several types of cancer. However, reproducible quantification of intra-tumor spatial heterogeneity remains largely unexplored. We propose an automated pipeline for prognostication of luminal BC based on the analysis of spatial distribution of Ki67 expression in tumor cells using a large well-characterized cohort (n = 2,081). The proposed Ki67 colocalization (Ki67CL) score can stratify ER+/HER2- BC patients with high significance in terms of BC-specific survival (p < 0.00001) and distant metastasis-free survival (p = 0.0048). Ki67CL score is shown to be highly significant compared with the standard Ki67 index. In addition, we show that the proposed Ki67CL score can help identify luminal BC patients who can potentially benefit from adjuvant chemotherapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Antígeno Ki-67 , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Inteligência Artificial
5.
Mod Pathol ; 37(3): 100416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154653

RESUMO

In recent years, artificial intelligence (AI) has demonstrated exceptional performance in mitosis identification and quantification. However, the implementation of AI in clinical practice needs to be evaluated against the existing methods. This study is aimed at assessing the optimal method of using AI-based mitotic figure scoring in breast cancer (BC). We utilized whole slide images from a large cohort of BC with extended follow-up comprising a discovery (n = 1715) and a validation (n = 859) set (Nottingham cohort). The Cancer Genome Atlas of breast invasive carcinoma (TCGA-BRCA) cohort (n = 757) was used as an external test set. Employing automated mitosis detection, the mitotic count was assessed using 3 different methods, the mitotic count per tumor area (MCT; calculated by dividing the number of mitotic figures by the total tumor area), the mitotic index (MI; defined as the average number of mitotic figures per 1000 malignant cells), and the mitotic activity index (MAI; defined as the number of mitotic figures in 3 mm2 area within the mitotic hotspot). These automated metrics were evaluated and compared based on their correlation with the well-established visual scoring method of the Nottingham grading system and Ki67 score, clinicopathologic parameters, and patient outcomes. AI-based mitotic scores derived from the 3 methods (MCT, MI, and MAI) were significantly correlated with the clinicopathologic characteristics and patient survival (P < .001). However, the mitotic counts and the derived cutoffs varied significantly between the 3 methods. Only MAI and MCT were positively correlated with the gold standard visual scoring method used in Nottingham grading system (r = 0.8 and r = 0.7, respectively) and Ki67 scores (r = 0.69 and r = 0.55, respectively), and MAI was the only independent predictor of survival (P < .05) in multivariate Cox regression analysis. For clinical applications, the optimum method of scoring mitosis using AI needs to be considered. MAI can provide reliable and reproducible results and can accurately quantify mitotic figures in BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Antígeno Ki-67 , Inteligência Artificial , Mitose , Índice Mitótico
6.
Med Image Anal ; 92: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157647

RESUMO

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Núcleo Celular/patologia , Técnicas Histológicas/métodos
7.
Med Image Anal ; 91: 102995, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898050

RESUMO

Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells (e.g., neutrophils, lymphocytes, epithelial cells and others). SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironment. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cellularities (cell densities) of different cells. We assess the generated images quantitatively using the Frechet Inception Distance and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. Moreover, with the assistance from pathologists, we showcase the ability of the generated images to accurately differentiate between benign and malignant tumors, thus reinforcing their reliability. We demonstrate that the proposed framework can be used to add new cells to a tissue images and alter cellular positions. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task. The implementation of the proposed SynCLay framework is available at https://github.com/Srijay/SynCLay-Framework.


Assuntos
Colo , Células Epiteliais , Humanos , Reprodutibilidade dos Testes , Contagem de Células , Técnicas Histológicas , Processamento de Imagem Assistida por Computador
8.
Cell Rep Med ; 4(12): 101313, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118424

RESUMO

Identification of the gene expression state of a cancer patient from routine pathology imaging and characterization of its phenotypic effects have significant clinical and therapeutic implications. However, prediction of expression of individual genes from whole slide images (WSIs) is challenging due to co-dependent or correlated expression of multiple genes. Here, we use a purely data-driven approach to first identify groups of genes with co-dependent expression and then predict their status from WSIs using a bespoke graph neural network. These gene groups allow us to capture the gene expression state of a patient with a small number of binary variables that are biologically meaningful and carry histopathological insights for clinical and therapeutic use cases. Prediction of gene expression state based on these gene groups allows associating histological phenotypes (cellular composition, mitotic counts, grading, etc.) with underlying gene expression patterns and opens avenues for gaining biological insights from routine pathology imaging directly.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica , Humanos , Feminino , Transcriptoma/genética , Redes Neurais de Computação , Fenótipo , Neoplasias da Mama/genética
9.
NPJ Precis Oncol ; 7(1): 122, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968376

RESUMO

Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/Nottingham: n = 2122 and Cohort-B/Coventry: n = 311) on early-stage luminal/HER2-negative BC patients treated with endocrine therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival (p = 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify luminal BC patients that may be likely to benefit from adjuvant chemotherapy.

10.
Lancet Digit Health ; 5(11): e786-e797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890902

RESUMO

BACKGROUND: Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies. METHODS: This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics. FINDINGS: A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927-0·9929), inflammatory biopsies (0·9658, 0·9655-0·9661), and atypical biopsies (0·9789, 0·9786-0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165-0·9697), 0·9576 (0·9568-0·9584), and 0·9636 (0·9615-0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features. INTERPRETATION: CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies. FUNDING: The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.


Assuntos
Inteligência Artificial , Neoplasias Colorretais , Humanos , Portugal , Estudos Retrospectivos , Biópsia , Reino Unido , Microambiente Tumoral
11.
Cell Rep Med ; 4(10): 101226, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816348

RESUMO

Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recommend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarcomatoid pattern in biphasic mesothelioma shows poorer prognosis. In this work, we develop a dual-task graph neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate the predictive performance of our model. We additionally validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias de Tecidos Moles , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Redes Neurais de Computação
12.
Artif Intell Med ; 143: 102628, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673586

RESUMO

Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89±0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS.


Assuntos
Mesotelioma Maligno , Humanos , Redes Neurais de Computação , Reconhecimento Psicológico
13.
Br J Cancer ; 129(11): 1747-1758, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777578

RESUMO

BACKGROUND: Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC. METHODS: Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined. RESULTS: A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis. CONCLUSION: AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Linfócitos do Interstício Tumoral/patologia , Inteligência Artificial , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo
14.
Bioinform Adv ; 3(1): vbad122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720007

RESUMO

Summary: Whole slide images (WSIs) are multi-gigapixel images of tissue sections, which are used in digital and computational pathology workflows. WSI datasets are commonly heterogeneous collections of proprietary or niche specialized formats which are challenging to handle. This note describes an open-source Python application for efficiently converting between WSI formats, including common, open, and emerging cloud-friendly formats. WSIC is a software tool that can quickly convert WSI files across various formats. It has a high performance and maintains the resolution metadata of the original images. WSIC is ideal for pre-processing large-scale WSI datasets with different file types. Availability and implementation: Source code is available on GitHub at https://github.com/John-P/wsic/ under a permissive licence. WSIC is also available as a package on PyPI at https://pypi.org/project/WSIC/.

15.
Mod Pathol ; 36(11): 100297, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544362

RESUMO

As digital pathology replaces conventional glass slide microscopy as a means of reporting cellular pathology samples, the annotation of digital pathology whole slide images is rapidly becoming part of a pathologist's regular practice. Currently, there is no recognizable organization of these annotations, and as a result, pathologists adopt an arbitrary approach to defining regions of interest, leading to irregularity and inconsistency and limiting the downstream efficient use of this valuable effort. In this study, we propose a Standardized Annotation Reporting Style for digital whole slide images. We formed a list of 167 commonly annotated entities (under 12 specialty subcategories) based on review of Royal College of Pathologists and College of American Pathologists documents, feedback from reporting pathologists in our NHS department, and experience in developing annotation dictionaries for PathLAKE research projects. Each entity was assigned a suitable annotation shape, SNOMED CT (SNOMED International) code, and unique color. Additionally, as an example of how the approach could be expanded to specific tumor types, all lung tumors in the fifth World Health Organization of thoracic tumors 2021 were included. The proposed standardization of annotations increases their utility, making them identifiable at low power and searchable across and between cases. This would aid pathologists reporting and reviewing cases and enable annotations to be used for research. This structured approach could serve as the basis for an industry standard and be easily adopted to ensure maximum functionality and efficiency in the use of annotations made during routine clinical examination of digital slides.


Assuntos
Patologia Clínica , Patologia Cirúrgica , Neoplasias Torácicas , Humanos , Patologia Clínica/métodos , Patologia Cirúrgica/métodos , Patologistas , Microscopia/métodos
16.
J Pathol ; 260(5): 564-577, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550878

RESUMO

Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered during the development of effective models and their deployment in practice. We aim to provide readers with an overview of the latest developments, assist them with insights into identifying some specific challenges that may require resolution, and suggest recommendations and potential future research directions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Inteligência Artificial , Humanos , Reino Unido
17.
Mod Pathol ; 36(10): 100254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380057

RESUMO

Tumor-associated stroma in breast cancer (BC) is complex and exhibits a high degree of heterogeneity. To date, no standardized assessment method has been established. Artificial intelligence (AI) could provide an objective morphologic assessment of tumors and stroma, with the potential to identify new features not discernible by visual microscopy. In this study, we used AI to assess the clinical significance of (1) stroma-to-tumor ratio (S:TR) and (2) the spatial arrangement of stromal cells, tumor cell density, and tumor burden in BC. Whole-slide images of a large cohort (n = 1968) of well-characterized luminal BC cases were examined. Region and cell-level annotation was performed, and supervised deep learning models were applied for automated quantification of tumor and stromal features. S:TR was calculated in terms of surface area and cell count ratio, and the S:TR heterogeneity and spatial distribution were also assessed. Tumor cell density and tumor size were used to estimate tumor burden. Cases were divided into discovery (n = 1027) and test (n = 941) sets for validation of the findings. In the whole cohort, the stroma-to-tumor mean surface area ratio was 0.74, and stromal cell density heterogeneity score was high (0.7/1). BC with high S:TR showed features characteristic of good prognosis and longer patient survival in both the discovery and test sets. Heterogeneous spatial distribution of S:TR areas was predictive of worse outcome. Higher tumor burden was associated with aggressive tumor behavior and shorter survival and was an independent predictor of worse outcome (BC-specific survival; hazard ratio: 1.7, P = .03, 95% CI, 1.04-2.83 and distant metastasis-free survival; hazard ratio: 1.64, P = .04, 95% CI, 1.01-2.62) superior to absolute tumor size. The study concludes that AI provides a tool to assess major and subtle morphologic stromal features in BC with prognostic implications. Tumor burden is more prognostically informative than tumor size.

18.
Gut ; 72(9): 1709-1721, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37173125

RESUMO

OBJECTIVE: To develop an interpretable artificial intelligence algorithm to rule out normal large bowel endoscopic biopsies, saving pathologist resources and helping with early diagnosis. DESIGN: A graph neural network was developed incorporating pathologist domain knowledge to classify 6591 whole-slides images (WSIs) of endoscopic large bowel biopsies from 3291 patients (approximately 54% female, 46% male) as normal or abnormal (non-neoplastic and neoplastic) using clinically driven interpretable features. One UK National Health Service (NHS) site was used for model training and internal validation. External validation was conducted on data from two other NHS sites and one Portuguese site. RESULTS: Model training and internal validation were performed on 5054 WSIs of 2080 patients resulting in an area under the curve-receiver operating characteristic (AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-recall (PR) of 0.98 (SD=0.003). The performance of the model, named Interpretable Gland-Graphs using a Neural Aggregator (IGUANA), was consistent in testing over 1537 WSIs of 1211 patients from three independent external datasets with mean AUC-ROC=0.97 (SD=0.007) and AUC-PR=0.97 (SD=0.005). At a high sensitivity threshold of 99%, the proposed model can reduce the number of normal slides to be reviewed by a pathologist by approximately 55%. IGUANA also provides an explainable output highlighting potential abnormalities in a WSI in the form of a heatmap as well as numerical values associating the model prediction with various histological features. CONCLUSION: The model achieved consistently high accuracy showing its potential in optimising increasingly scarce pathologist resources. Explainable predictions can guide pathologists in their diagnostic decision-making and help boost their confidence in the algorithm, paving the way for its future clinical adoption.


Assuntos
Inteligência Artificial , Medicina Estatal , Humanos , Masculino , Feminino , Estudos Retrospectivos , Algoritmos , Biópsia
19.
J Pathol ; 260(1): 32-42, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705810

RESUMO

Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos do Interstício Tumoral/patologia , Inteligência Artificial , Austrália , Prognóstico , Microambiente Tumoral
20.
Med Image Anal ; 83: 102685, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410209

RESUMO

The recent surge in performance for image analysis of digitised pathology slides can largely be attributed to the advances in deep learning. Deep models can be used to initially localise various structures in the tissue and hence facilitate the extraction of interpretable features for biomarker discovery. However, these models are typically trained for a single task and therefore scale poorly as we wish to adapt the model for an increasing number of different tasks. Also, supervised deep learning models are very data hungry and therefore rely on large amounts of training data to perform well. In this paper, we present a multi-task learning approach for segmentation and classification of nuclei, glands, lumina and different tissue regions that leverages data from multiple independent data sources. While ensuring that our tasks are aligned by the same tissue type and resolution, we enable meaningful simultaneous prediction with a single network. As a result of feature sharing, we also show that the learned representation can be used to improve the performance of additional tasks via transfer learning, including nuclear classification and signet ring cell detection. As part of this work, we train our developed Cerberus model on a huge amount of data, consisting of over 600 thousand objects for segmentation and 440 thousand patches for classification. We use our approach to process 599 colorectal whole-slide images from TCGA, where we localise 377 million, 900 thousand and 2.1 million nuclei, glands and lumina respectively. We make this resource available to remove a major barrier in the development of explainable models for computational pathology.


Assuntos
Pesquisa Biomédica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...