Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628819

RESUMO

Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin's cytotoxic effect.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Proteínas de Choque Térmico HSP27/genética , Espécies Reativas de Oxigênio , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular , Ácidos Graxos
2.
J Steroid Biochem Mol Biol ; 199: 105600, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958633

RESUMO

The vitamin D receptor (VDR) and its ligand 1,25(OH)2D3 (1,25D) impact differentiation and exert anti-tumor effects in many tissues, but its role in salivary gland has yet to be defined. Using immunohistochemistry (IHC), we have detected strong VDR expression in murine and human salivary gland ducts. Compared to normal gland, VDR protein expression was retained in differentiated human pleomorphic adenoma (PA) but was undetectable in undifferentiated PA and in carcinomas, suggesting deregulation of VDR during salivary cancer progression. To gain insight into the potential role of VDR in salivary cancer, we assessed the effects of vitamin D in vivo and in vitro. Despite the presence of VDR in salivary gland, chronic dietary vitamin D restriction did not alter morphology of the salivary epithelium in C57/Bl6 mice. The localization of VDR in ductal epithelium prompted us to examine the effects of 1,25D in an established cell line (mSGc) derived from normal murine submandibular gland (SMG). This previously characterized cell line consists of multiple stem, progenitor and differentiated cell types as determined by mutually exclusive cellular expression of basal, ductal and myoepithelial markers. We demonstrated VDR expression and regulation of VDR target genes Vdr and Postn by 1,25D in mSGc, indicating functional ligand-mediated transcriptional activity. The effect of VDR signaling on epithelial differentiation markers was assessed by qPCR and IHC in mSGc cells treated with 1,25D. We found that 1,25D reduced mRNA expression of the basal cell progenitor marker keratin 5 (K5) and increased expression of the differentiated ductal cell marker keratin 7 (K7). Further, we found that 1,25D significantly decreased the number of proliferating cells, including proliferating K5+ cells. Characterization of cell cycle by Muse cytometry indicated 1,25D treatment decreased cells in S, G2, and M phase. The inhibition of K5+ cell proliferation by 1,25D is of particular interest because K5+ basal cells contribute to a wide variety of salivary tumor types. Our studies suggest that 1,25D alters cancer-relevant progenitor and differentiation markers in the salivary gland.


Assuntos
Receptores de Calcitriol/genética , Neoplasias das Glândulas Salivares/genética , Glândulas Salivares/metabolismo , Vitamina D/genética , Animais , Calcitriol/farmacologia , Diferenciação Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Homeostase/genética , Humanos , Camundongos , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia , Transdução de Sinais/genética , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...