Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 8: 179, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18847469

RESUMO

BACKGROUND: Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora. RESULTS: Design of specific primers and probe was achieved based on comparison of 108 published bifidobacterial 16S rDNA sequences with the recently published sequence of the human faecal isolate B. thermophilum RBL67. Specificity of the primer was tested in silico by similarity search against the sequence database and confirmed experimentally by PCR amplification on 17 Bifidobacterium strains, representing 12 different species, and two Lactobacillus strains. The qPCR assay developed was linear for B. thermophilum RBL67 DNA quantities ranging from 0.02 ng/microl to 200 ng/microl and showed a detection limit of 10(5) cells per gram faeces. The application of this new qPCR assay allowed to detect the presence of B. thermophilum in one sample from a 6-month old breast-fed baby among 17 human faecal samples tested. Additionally, the specific qPCR primers in combination with selective plating experiments led to the isolation of F9K9, a faecal isolate from a 4-month old breast-fed baby. The 16S rDNA sequence of this isolate is 99.93% similar to that of B. thermophilum RBL67 and confirmed the applicability of the new qPCR assay in faecal samples. CONCLUSION: A new B. thermophilum-specific qPCR assay was developed based on species-specific target nucleotides in the 16S rDNA. It can be used to further characterize the composition of the bifidobacterial community in the human gastrointestinal tract. Until recently, B. thermophilum was considered as a species of animal origin, but here we confirm with the application of this new PCR assay the presence of B. thermophilum strains in the human gut.


Assuntos
Bifidobacterium/genética , Primers do DNA , Fezes/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Adulto , Técnicas de Tipagem Bacteriana/métodos , Infecções por Bifidobacteriales/microbiologia , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Genes de RNAr , Humanos , Lactente , Sensibilidade e Especificidade , Alinhamento de Sequência , Análise de Sequência de DNA
2.
BMC Biotechnol ; 7: 55, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17850651

RESUMO

BACKGROUND: Bacteriocin-producing lactic acid bacteria are commonly used as natural protective cultures. Among them, strains of the genus Pediococcus are particularly interesting for their ability to produce pediocin, a broad spectrum antimicrobial peptide with a strong antagonistic activity against the food-borne pathogen Listeria monocytogenes. Furthermore, there is increasing interest in isolating new bacteriocin-producing strains of human intestinal origin that could be developed for probiotic effects and inhibition of pathogenic bacteria in the gut. In this work, we typed a new strain, co-isolated from baby faeces together with a Bifidobacterium thermophilum strain, and characterized its proteinaceous compound with strong antilisterial activity. RESULTS: The newly isolated strain UVA1 was identified as a Pediococcus acidilactici by carbohydrate fermentation profile, growth at 50 degrees C and 16S rDNA sequencing. The partially purified bacteriocin was heat resistant up to 100 degrees C, active over a wide range of pH (2 to 9) and susceptible to proteolytic enzymes. The molecular weight, estimated by SDS-PAGE, was similar to that of pediocin AcH/PA-1 (4.5 kDa). P. acidilactici UVA1 harboured a 9.5-kb plasmid that could be cured easily, which resulted in the loss of the antimicrobial activity. Southern hybridization using the DIG-labelled pedA-probe established that the bacteriocin gene was plasmid-borne as for all pediocin described so far. Nucleotide sequence of the whole operon (3.5 kb) showed almost 100 % similarity to the pediocin AcH/PA-1 operon. The mRNA transcript for pedA could be detected in P. acidilactici UVA1 but not in the cured derivative, confirming the expression of the pedA-gene in UVA1. Using a new real-time PCR assay, eleven out of seventeen human faecal samples tested were found to contain pedA-DNA. CONCLUSION: We identified and characterised the first pediocin produced by a human intestinal Pediococcus acidilactici isolate and successfully developed a new real-time PCR assay to show the large distribution of pedA-containing strains in baby faecal samples.


Assuntos
Bacteriocinas/genética , Fezes/microbiologia , Pediococcus/genética , Reação em Cadeia da Polimerase/métodos , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Southern Blotting , Eletroforese em Gel de Poliacrilamida , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Listeria/efeitos dos fármacos , Peso Molecular , Pediococcus/isolamento & purificação , Pediococcus/metabolismo , Fenótipo , Plasmídeos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...